
Structure-property correlations in model composite materials

A. P. Roberts* and M. A. Knackstedt
Department of Applied Mathematics, Research School of Physical Sciences, Australian National University, Canberra,

Australian Capital Territory 0200, Australia
~Received 9 April 1996!

We investigate the effective properties~conductivity, diffusivity, and elastic moduli! of model random
composite media derived from Gaussian random fields and overlapping hollow spheres. The morphologies
generated in the models exhibit low percolation thresholds and give a realistic representation of the complex
microstructure observed in many classes of composites. The statistical correlation functions of the models are
derived and used to evaluate rigorous bounds on each property. Simulation of the effective conductivity is used
to demonstrate the applicability of the bounds. The key morphological features that effect composite properties
are discussed.@S1063-651X~96!06308-8#

PACS number~s!: 5.40.1j, 44.30.1v, 72.15.Eb, 62.20.Dc

I. INTRODUCTION

The prediction of effective properties of heterogeneous
systems such as porous media and two phase composites is
of considerable interest@1–3#. Understanding the interrela-
tionships between rock properties and their expression in
geophysical and petrophysical data is necessary for enhanced
characterization of underground reservoirs. This understand-
ing is crucial to the economics of oil and gas recovery, geo-
thermal energy extraction, and groundwater pollution abate-
ment. Manufactured composites such as foamed solids@4#
and polymer blends@5# often exhibit a complex microstruc-
ture. To optimize the properties of these systems it is neces-
sary to understand how morphology influences effective
properties. In general, the difficulty of accounting for micro-
structure has made exact prediction impossible in all but the
simplest of cases.

On the other hand, considerable progress has been made
in the derivation of rigorous bounds on a host of properties
@1,6#. For example, relatively accurate bounds have been de-
rived for the elastic moduli and conductivity of isotropic

two-phase composites@7–11#. To evaluate these bounds for
a given system it is necessary to know the three-point statis-
tical correlation function@12#. Due to the difficulty of mea-
suring this information@13–15#, a number of model media
have been proposed for which the functions can be explicitly
evaluated. These include cellular@16#, particulate@1#, and
periodic @17# materials@e.g., Figs. 1~a! and 1~b!#. The prin-
cipal problem with these models is that they employ over-
simplified representations of the inclusion~or pore! structure
observed in many natural and manufactured composite ma-
terials.

Recently, we derived the properties of a model of amor-
phous materials@18# @e.g., Fig. 1~c!# based on level-cut
Gaussian random fields@19# ~GRF’s!. Although the GRF
model is applicable to many classes of nonparticulate com-
posite materials, it cannot account for materials that remain
percolative at very low volume fractions.

Porous rocks@3,20#, polymer blends@5#, solid foams@4#,
and membranes provide examples of systems where a single
phase remains connected down to low volume fractions. The
percolation threshold of a system is only one factor that de-
termines its effective properties: The shape of the pores and
inclusions should also be considered@21–23#. Polystyrene

FIG. 1. Models of composite microstructure.~a! Periodic models, regular array of spheres;~b! particulate models, identical overlapping
spheres~IOS!, and ~c! Gaussian random field~GRF! models, single-level cut variant. None of the models can mimic the microstructure
observed in percolative low volume fraction materials~e.g., polystyrene foam, Fig. 2!.
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foam, an example of a highly porous material, is shown in
Fig. 2. The complex solid phase has a sheetlike character
quite different from that found in cellular, particulate@1#, and
single-level cut GRF@14,18# models~Fig. 1!. It is clear that
current models of composite microstructure cannot account
for the percolative and morphological characteristics ob-
served in porous rocks, solid foams, membranes, and poly-
mer blends.

In this paper we describe models that give a realistic rep-
resentation of the microstructure observed in many classes of
composite materials and remain percolative at very low vol-
ume fractions. Variational bounds and computer simulation
are used to estimate the influence of morphology on diffusive
transport and elastic properties. The first model is an exten-
sion of the Gaussian random field model considered in a
previous paper@18#. In this case the interface between the
composite phases is defined by a two-~rather than one-! level
cut of a GRF@19,24–26#. The freedom in choosing the po-
sition of the cuts~for a given volume fraction! and the spec-
tra of the model allows a rich variety of morphologies to be
modeled. By qualitatively comparing these morphologies to
those observed in physical systems the models can be asso-
ciated with classes of physical composites.

A second highly porous model can be obtained by gener-
alizing the well-known identical overlapping sphere~IOS!
model @1# to include the case of arbitrarily thin hollow
spheres. This model is applicable to a class of ceramics and
foams fabricated from hollow spheres: a composite that pos-
sesses excellent uniformity and properties@27#.

To study the properties of these media we evaluate
bounds on the effective conductivity and elastic moduli. The
key microstructure parameters (z1 andh1) that occur in the
derivation of the bounds@12# are tabulated along with illus-
trations of the model morphologies. In addition we use a
finite difference scheme to directly simulate the effective
conductivity. This allows us to comment on the applicability
of the bounds and on their use for predictive purposes.

The paper is organized as follows. In Sec. II we derive the
three-point correlation function for the two-level cut Gauss-
ian random field. In Sec. III analogous results are derived for
the identical overlapping spherical annuli~IOSA! or hollow
sphere model. In Secs. IV and V the microstructure param-
eters are calculated and computer simulations of the effective

conductivity are compared with the resultant bounds. In Sec.
VI we discuss the influence of morphology on the transport
and mechanical properties of composites.

II. THE TWO-LEVEL CUT GRF MODEL

As in @18# we takey(r ) as an isotropic Gaussian random
field with a given field-field correlation function
^y(r i)y(r j )&5g K(r i j ). Here r i j5ur i2r j u and for conve-
nience we denoteg K(r i j ) by gi j , or simplyg if no ambigu-
ity arises. Following Berk@19# it is possible to define a com-
posite medium with phase 1 the region in space where
a<y(r )<b. The remaining region is phase 2. In the limit
b→` the one-level cut GRF considered in Refs.@18,26# is
recovered. Then-point correlation function is given by

pn~r1 ,r2 , . . . ,rn!5K )
i51

n

@H~yi2a!2H~yi2b!#L ,
~2.1!

whereH(y) is the Heaviside function andyi5y(r i).
The microstructure of the material is fully determined by

specifyinga, b, andg K(r ). The latter quantity is related to
the spectral density of the fieldr K(k) by a clipped Fourier
transform

g K~r !5E
0

K

4pk2r K~k!
sinkr

kr
dk. ~2.2!

It was shown in@18# that few differences arise among the
conductivity of the one-level cut Gaussian random fields de-
fined with differing spectra. Therefore we employ two model
materials that showed the greatest variation in properties. In
the notation of@18# these are model I,

r~k!5P21p22@~12n21k2!214n2#21, ~2.3!

lim
K→`

g K~r !5e2r
sinnr

nr
, ~2.4!

where P is a normalization constant chosen to ensure
g K(0)51, and model III,

r~k!5
3

4p~m321!
@H~m!2H~1!# ~m.1!, ~2.5!

g~r !5
3~sinmr2mrcosmr2sinr1rcosr !

r 3~m321!
. ~2.6!

No normalization constant is necessary in this model pro-
vided thatK>m. In following sections we employ spectrum
I (n50, K5`), spectrum I (n50, K58), and spectrum III
(m51.5). In this paper the physical parametersn andm are
not varied and will no longer be explicitly stated.

In the notation of Appendix A the one-point correlation
function ~or volume fraction! is just

p5L1~a!2L1~b!5
1

A2p
E

a

b

e2~1/2!t2dt. ~2.7!

FIG. 2. Morphology of polystyrene foam.
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The two-point correlation function for the two-level cut
Gaussian random field is

p25p21L2~g,a,a!22L2~g,a,b!1L2~g,b,b!,
~2.8!

where we have used the fact thatL2(g,a,b)5L2(g,b,a)
andp2(g50)5p2. Now using Eq.~A6! leads to@25#

p2~g!5p21
1

2pE0
g dt

A12t2
FexpS 2

a2

11t D
2expS 2

1

2

a222abt1b2

~12t2! D1expS 2
b2

11t D G .
~2.9!

Similarly the three-point correlation function is

p35p31L3~g,a,a,a!2L3~g,a,a,b!2L3~g,a,b,a!

2L3~g,b,a,a!1L3~g,a,b,b!1L3~g,b,a,b!

1L3~g,b,b,a!2L3~g,b,b,b!, ~2.10!

whereL3 is given in Eq.~A13! andg5(g12,g13,g23). We
could find no symmetries in these terms to allow analytical
or computational simplification of the results.

For our purposes it is necessary to choosea andb for a
given value of the volume fractionp. There are many ways
that this can be done. An obvious method is to require that an
equivalent fraction of phase 1 lies on either side of a particu-
lar level cuty(r )5g. We classify these ‘‘symmetric’’ mod-
els by the parameter

s5
1

A2p
E

g

`

e2~1/2!t2dt ~2.11!

so thatsP@0,1#. For a given volume fractionp, a, andb are
defined through the relations

p

2
5

1

A2p
E

a

g

e2~1/2!t2dt5
1

A2p
E

g

b

e2~1/2!t2dt. ~2.12!

Materials defined in this manner are denoted, for example,
by III( s50.5!. This indicates that the spectrum of model III
is employed and thats50.5 ~corresponding to the case
a52b). For comparison with the one-level cut case dis-
cussed in@18# it is also useful to define a two-level cut GRF
that reduces to the former model in a particular limit. This is
done by fixingb and varyinga such that a given volume
fraction is achieved. These ‘‘base’’-level models are speci-
fied by the value

b5
1

A2p
E

b

`

e2 ~1/2! t2dt ~2.13!

wherebP@0,1#. Sinceb is fixed,a is calculated using Eq.
~2.7!. In terms of nomenclature used to describe the spectra
previously these models are denoted, for example, as III
(b50.3! or I(b50! ~i.e.,b5`). The latter case corresponds
to the one-level cut field.

Depending on the spectra employed and the choice ofa
andb the two-level cut GRF scheme can model a wide range
of morphologies observed in physical composites. The mor-
phology of one-level cut fields is characterized by a random
array of irregular inclusions interconnected by narrower
necks @18# similar to a ‘‘node-bond’’ geometry@see Fig.
1~c!#. This type of pore~or inclusion! shape has been ob-
served in a range of materials including alloys@28# and sedi-
mentary rocks@21#. Taking b52a in the two-level cut
model (s50.5) leads to sheetlike structures~see Figs. 3 and
4! with differing degrees of roughness. The smooth sheetlike
structures of model III(s50.5! ~Fig. 3! are similar to the
pores observed in dolomitic limestone@29# and the con-
nected matrix in solid foams@30# ~see Fig. 2! and polymer
blends @31#. The rough sheetlike morphology evident in
model I(s50.5! (K58) ~Fig. 4! is similar to the rough po-

FIG. 3. Interface of the media III(s50.5! at a volume fraction of
p50.2. The dark region is given by20.253,y(r ),0.253. Note
the highly connected structures.

FIG. 4. Interface of the media I(s50.5! with a pore volume
fraction of p50.2. The light region corresponds to
20.253,y(r ),0.253.
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rous structures observed in pore-cast studies of sandstones
@14,21#. Note that certain classes of sandstone have been
shown to have a fractal pore surface withDs'2.5 @32#. This
can be modeled by takingK→` in spectrum I~Appendix
B!. Qualitatively different microstructures can be obtained in
the two-level cut scheme ifbÞa. For example, the mor-
phology of model III(s50.2! ~Fig. 5! has both a node-bond
and a sheetlike quality.

III. OVERLAPPING HOLLOW SPHERES

A second low porosity model can be defined by general-
izing the IOS model to the case of IOSA. For this model the
probability thatn pointsr i chosen at random will fall in the
void phase~i.e., outside the hollow spheres! is just

qn5exp@2rVaU
~n!~r1 , . . . ,rn!#. ~3.1!

HereVaU
(n) is the union volume ofn spherical annuli with

centers atr i andr is the number density of the annuli.
To see this consider a large region of the composite ma-

terial of volumeV that containsN5rV randomly positioned
~i.e., uncorrelated! spherical annuli. Now considerqn defined
above. If and only if the center of an annulus is located
within the volumeVaU

(n) will one ~or more! of the n points
then lie in the solid phase. Since each annulus is uniformly
distributed the probability that its center will not fall in the
volumeVaU

(n) is (12VaU
(n)/V). Now there areN such uncor-

related spheres so

qn5 lim
N→`

S 12
rVaU

~n!

N D N5exp~2rVaU
~n!!, ~3.2!

whereV, and henceN, has been taken to be infinitely large.
This argument~for the spherical case! is due to Brown
@33,34#. By definitionqn is just then-point void-void corre-
lation function. To distinguish the correlation functions asso-
ciated with the void and solid we refer to the above model as
the inverse IOSA model~as the correlation function corre-

sponds to the phase outside the annuli!. The correlation func-
tions for the IOSA model (pn) are then just linear combina-
tions of qn , qn21, etc. For example,p1512q1 and
p2(r 12)5122q1q2(r 12).

Suppose the inner and outer radii of the annuli arem and
n; then the union volume of a single annulus is
Va5VaU

(1)54p(n32m3)/3. The number density of the an-
nuli is related to the volume fraction of void (q) by the
formula r52 lnq/Va. The higher-order union volumes are
derived in terms of the intersection volumes of spheres of
different radii. For the union volume of two annuli a distance
d apart we have

VaU
~2!~d!52Va2VaI

~2!~d!, ~3.3!

where VaI
(2)(d) is the intersection volume of two annuli.

This function is given by

VaI
~2!~d!5VInn

~2! ~d!1VImm
~2! ~d!22VImn

~2! ~d!, ~3.4!

with VIxy
(2)(d) the intersection volume of two spheres of radii

x and y ~see Appendix C!. The union volume of the three
annuli distancesa, b, andc apart is

VaU
~3!~a,b,c!53Va2VaI

~2!~a!2VaI
~2!~b!2VaI

~2!~c!

1VaI
~3!~a,b,c!, ~3.5!

where the intersection volume of three annuli (VaI
(3)) is

VaI
~3!5VInnn

~3! 2VImmm
~3! 2VImnn

~3! 2VInmn
~3! 2VInnm

~3! 1VImmn
~3!

1VImnm
~3! 1VInmm

~3! . ~3.6!

Here the functionVIxyz
(3) (a,b,c) is the intersection volume of

three spheres of radiix, y, andz, with a the distance between
the spheres of radiiy and z, b the distance between the
spheres of radiix and z, and c the distance between the
spheresx andy ~see Appendix C!.

As in the two-level cut GRF model there are two obvious
ways of choosing the internal (r 05m) and external
(r 15n) radii for a given volume fraction. In the first the
internal radii of the spheres is held fixed and the number
density of spheres is increased to achieve a given volume
fraction. This model morphology corresponds to manufac-
tured materials comprised of sintered similarly sized hollow
spheres@27#. A plot of the interface for the IOSA model is
given for the caser 050.8 andp50.2 in Fig. 6. Using results
@1,35–37# developed for overlapping solid spheres~i.e., IOS!
it is possible to incorporate a distribution of sphere sizes in
the hollow sphere model. However, polydispersity effects
have been shown to be quite small@38#. In the second model
the number density of spheres is held fixed~so that the maxi-
mum volume fraction achievable ispmax) and the internal
radii is varied to achieve a given volume fraction.

The percolation thresholds of each phase of the IOSA
modelpc

a ~solid! andqc
a ~void!, can be easily derived from a

knowledge of the threshold values of the standard IOS
model:pc

s'0.3 @39# andqc
s'0.03@40#. For the variable den-

sity model (r 0 fixed! the percolation thresholds are
pc
a512(12pc

s)12(r0 /r1)
3
andqc

a5(qc
s)12(r0 /r1)

3
~so pc

a→0
andqc

a→1 asr 0→r 1). For the fixed density model the IOSA

FIG. 5. Interface of the media III(s50.2! at a volume fraction of
p50.2. The dark region is given by21.28,y(r ),20.253.
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solid phase is percolative ifpmax>pc
s and the void phase is

percolative ifqmin512pmax>qc
s .

IV. MICROSTRUCTURE PARAMETERS

Bounds have been calculated on the conductivity@7,10#
and the bulk@8# and shear@9,11# moduli of composite ma-
terials~reviewed in Ref.@1#!. These can be expressed@12# in
terms of the volume fractions and properties of each of the
phases and two microstructure parameters

z15
9

2pqE0
`dr

r E0
`ds

s E21

1

duP2~u! f ~r ,s,t !, ~4.1!

h15
5z1
21

1
150

7pqE0
`dr

r E0
`ds

s E21

1

duP4~u! f ~r ,s,t !,

~4.2!

where f (r ,s,t)5p3(r ,s,t)2p2(r )p2(s)/p,t
25r 21s222rsu

andPn(u) denotes the Legendre polynomial of ordern. As
we argued in Ref.@18#, it only appears necessary to know
broad microstructural information about a general composite
to successfully apply the bounds. This conclusion arose from
the observation that the bounds are relatively insensitive to
small variations in the microstructure parameters. Further-
more, we found that the parametersz1 andh1 are insensitive
to fine microstructural details within a class of composites
~e.g., the overlapping sphere class or the one-level cut GRF
class!. An example of this insensitivity is also seen when
polydispersity effects of particulate models are considered
@38#. In light of these facts the parameters calculated from
models may well have application to physical composites for
which precise microstructural information is unavailable.

In Fig. 7 we provide a graphical summary of the wide
range of isotropic composites for whichp3 ~and hence the
microstructure parameters! can been exactly calculated. It is
clear that the two-level cut GRF and overlapping hollow
sphere model considerably expand the classes of materials to
which the bounds can be applied.

We now report calculations of the microstructure param-
eters for a variety of two-level cut GRF and IOSA models.
Our method of calculatingz1 ~andh1) has been discussed
previously@18#. In addition, we employ an adaptive integra-
tion algorithm@41# to compensate for the fact that the sub-
integrand*21

1 Pn(u) f (r ,s,t)du varies rapidly in the region
r'0 and involves a considerable number of function evalu-
ations. The error in the results is less than 1%. To model as
wide a range of materials as possible three qualitatively dif-
ferent spectra are used in the level cut GRF scheme: models
I (K5`), I (K58), and III (m51.5). These spectra lead to
surface fractal, rough, and smooth interfaces, respectively.

As we are primarily interested in low volume fraction
porous or solid media, the microstructure parameters we re-
port are in the range 0.0,p<0.4. The results forz1 and
h1 are given in Tables I and II and selected results are plot-
ted in Figs. 8 and 9. The results for the two variants of the
IOSA model are given in Table III and plotted along with the
results for the two-level cut GRF models in Figs. 8 and 9.
Due to the simple geometry of the IOSA model it is possible
to calculatese to orderp ~see Appendix D!. This result can
then be used to showz1up505(r 0 /r 1)

3 ~represented by sym-
bols in Fig. 8!, in agreement with our numerical calculations
of z1.

FIG. 6. Interface of the IOSA model (r 050.8, r 151.0) at a
volume fraction ofp50.2.

FIG. 7. Variety of microstructures~volume fraction 20%! for
which the third-order statistics are known exactly:~a!–~c! IOS and
IOSA models (r 151); ~d!–~f! one-level cut GRF’s;~g!–~l! two-
level cut GRF’s. Except where noted, model I hasK58 and
n50 and model IIIm51.5.
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To compare the properties of different media we plot~Fig.
10! the upper bound on the conductivity for one member of
each class of composite: two-level cut GRFs, hollow
spheres, IOS voids@34# ~or ‘‘Swiss cheese’’!, one-level cut
GRFs@18#, and IOS@34# ~or solid spheres!.

We have also evaluated bounds on the shear, bulk, and
Young’s moduli of the models. In Ref.@30# we showed that
the upper bound on Young’s modulus was in good agree-
ment with experimental measurements for foamed solids.
Model III(s50.5! provides a good model of polystyrene
foam ~compare Figs. 2 and 3!, and the IOSA model accu-
rately mimics the microstructure and properties of sintered
hollow glass spheres. In Fig. 11 the upper bound on the shear
modulus is shown for each class of composite considered
above: the microstructure clearly has a strong influence on
elastic properties. The bulk and Young’s moduli show simi-
lar behavior.

V. SIMULATIONS OF sE

In addition to bounding the properties of composite media
and providing qualitative information on these properties, it

has been observed that the bounds also have reasonable pre-
dictive power@1#. To test the predictive utility of the bounds
and provide a direct comparison between microstructure and
properties we use a finite-difference method to explicitly cal-
culate the conductivity of several two-level cut GRFs.

The effective conductivityse of a composite is defined as
the ratio of the current density to the applied potential. We
takeT as the scale of the sample andM3 as the number of
nodes~so the spatial resolution scale isDx5T/M ). The gen-
eration of random fields and the method for determiningse
were described in Ref.@18# for the case of one-level cut
fields. A number of additional difficulties are encountered in
the simulations ofse for the two-level cut GRFs. The major
problems are~i! discretizationeffects that occur when the
discretization length scaleDx is insufficient to resolve the
thin sheetlike structures that arise~see, e.g., Fig. 3! and ~ii !
finite-scaleeffects that arise ifT is not large enough to rep-
resent an ‘‘infinite’’ medium. In practice,T should be several

TABLE I. Microstructure parameterz1 for a range of materials generated from the symmetric GRF
model.

Model I, K5` I, K58 III

s 0.20 0.35 0.50 0.20 0.35 0.50 0.20 0.35 0.50

p z1

0.050 0.401 0.401 0.402 0.706 0.773 0.786 0.785 0.872 0.892
0.075 0.402 0.408 0.409 0.641 0.719 0.739 0.733 0.845 0.873
0.100 0.405 0.413 0.415 0.597 0.684 0.706 0.691 0.824 0.858
0.125 0.410 0.422 0.425 0.563 0.655 0.677 0.655 0.807 0.845
0.150 0.417 0.428 0.431 0.536 0.633 0.656 0.625 0.791 0.828
0.200 0.425 0.443 0.449 0.500 0.601 0.628 0.574 0.769 0.819
0.250 0.435 0.459 0.464 0.478 0.583 0.611 0.532 0.753 0.811
0.300 0.443 0.475 0.481 0.464 0.575 0.605 0.495 0.741 0.808
0.350 0.451 0.491 0.497 0.455 0.572 0.603 0.456 0.734 0.807
0.400 0.456 0.506 0.515 0.444 0.574 0.607 0.411 0.728 0.810

TABLE II. Elasticity microstructure parameterh1 for a range of
materials generated using the symmetric GRF model.

Model I, K5` I, K58 III

s 0.20 0.50 0.20 0.50 0.20 0.50

p h1

0.050 0.355 0.351 0.523 0.613 0.609 0.754
0.075 0.358 0.362 0.463 0.548 0.543 0.705
0.100 0.362 0.369 0.430 0.516 0.500 0.672
0.125 0.370 0.377 0.416 0.493 0.471 0.648
0.150 0.373 0.388 0.407 0.480 0.449 0.608
0.200 0.394 0.402 0.404 0.473 0.426 0.621
0.250 0.410 0.430 0.410 0.478 0.414 0.609
0.300 0.426 0.451 0.420 0.492 0.408 0.615
0.350 0.438 0.474 0.430 0.510 0.406 0.627
0.400 0.442 0.495 0.431 0.533 0.396 0.643

FIG. 8. Microstructure parameterz1 for selected models. The
IOS model and model III~b50! are included to show the behavior
of z1 for different classes of composites~see Fig. 7!. The solid
symbols represent analytic calculations ofz1up50 for the IOSA
model.
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times the correlation length of the microstructure~approxi-
mately unity!. Discretization effects can be reduced by in-
creasingM or decreasingT ~to increase the width of the
sheets relative toDx). However, our computational require-
ments dictateM<128 and decreasingT leads to noisy re-
sults. ThusT must be chosen to minimize each of these
competing errors. By performing several numerical tests@41#
a reasonable value ofT was determined to ensure that simu-
lations ofse are accurate. As the sheets become thinner~i.e.,
p decreases! it was found that smaller values ofT are nec-
essary to eliminate finite-scale effects. This can be explained
in terms of the faster decay of the correlations between the
components of phase 1.

We choose to study the effective conductivity of models
III( s50.5!, I(s50.5! (K58), and III(s50.2!. The former
models provide examples of smooth and rough sheetlike
pores. The latter model@III( s50.2!# has a morphology com-
prised of inclusions with both a sheetlike and node-bondlike
quality. The conductivity contrasts employed occur in physi-
cal composites and have been studied previously, allowing

comparisons to be made. In each of the cases we report re-
sults averaged over five samples for a range of volume frac-
tions 0.05<p<0.4. In all cases the simulational data lie be-
tween the bounds.

First we consider the conductivity contrasts1,2510,1.
The results are tabulated in Table IV and plotted in Fig. 12
along with the bounds for each model. Here and in subse-
quent calculations the lower bound of Beran@7# and the up-
per bound of Milton@10# ~see Ref.@18#! are employed. The
data for model III(s50.5! practically lie along the relevant
upper bound. In contrast, the effective conductivity of mod-
els III(s50.2! and I(s50.5! fall between the bounds; how-
ever, the upper bound still provides a reasonable estimate of
se in each case. For purposes of comparison the bounds for
the one-level cut GRF model III(b50! are included in Fig.

FIG. 9. Elasticity microstructure parameterh1 for selected mod-
els. The IOS model and model III(b50! are included to show the
behavior ofh1 for different classes of composites~see Fig. 7!.

TABLE III. Microstructure parameters for different versions of the IOSA model. For the caser 050 the
results are just those of the standard IOS model~see Ref.@1#!.

Model r 050.5 r 050.9 pmax50.9 pmax50.7

p z1 h1 z1 h1 z1 h1 z1 h1

0.05 0.152 0.119 0.737 0.468 0.974 0.936 0.955 0.888
0.10 0.179 0.153 0.744 0.490 0.948 0.880 0.911 0.788
0.15 0.207 0.187 0.752 0.512 0.924 0.827 0.870 0.707
0.20 0.234 0.221 0.759 0.533 0.900 0.780 0.829 0.640
0.25 0.262 0.254 0.766 0.554 0.877 0.746 0.791 0.590
0.30 0.289 0.288 0.772 0.576 0.856 0.710 0.754 0.551
0.35 0.317 0.322 0.778 0.596 0.835 0.683 0.718 0.524
0.40 0.345 0.356 0.784 0.616 0.815 0.662 0.683 0.508
0.50 0.402 0.424 0.794 0.656 0.776 0.638 0.614 0.502
0.60 0.459 0.492 0.801 0.697 0.741 0.631 0.539 0.520
0.70 0.517 0.560 0.805 0.733 0.706 0.643 0.414 0.511
0.80 0.578 0.630 0.804 0.771 0.666 0.668
0.90 0.643 0.705 0.792 0.804 0.558 0.658

FIG. 10. Three-point upper bound@7# on the effective conduc-
tivity ~contrast 1:0! of five different classes of microstructure. The
data for the IOS and one-level cut GRF models are from Refs.
@34,18#.
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12. At low p the bounds clearly differentiate between the
different classes of media. It is clear that the model III
(s50.5! is a significantly more efficient conductor than mod-
els III(s50.2! or I(s50.5! and those defined using a one-
level cut GRF in@18#.

The simulation data for the contrasts1,2550,1 is reported
in Table V and plotted in Fig. 13. Qualitatively the results
are the same as those discussed in relation to the case
s1,2510,1. Note that the upper bound is again a good esti-
mate for model III(s50.5! and less so for models III
(s50.2! and I(s50.5!.

In porous rocks and solid foams the conductivity of the
medium surrounding the conducting pathways has negligible
~or zero! conductivity. To model such systems the contrast
s1,251,0 is used. The data and computational parameters
used in the simulations are reported in Table VI. Each ma-
terial is seen to be conductive at the lowest volume fraction
consideredp50.05. Discretization effects prohibit accurate
simulations ofse at lower volume fractions. The simulation
data and the upper bounds are plotted in Fig. 14. Even in this

large contrast situation the upper bound for model III
(s50.5! agrees with the data.

To consider the case of diffusive transport in membranes,
we assume that the membrane has negligible diffusivity with
respect to the surrounding fluid. Therefore the contrast
s1,250,1 is employed. For this system large discretization
effects prohibit the consideration of model I(s50.5! at mem-
brane volume fractions of less thanp50.10. The data are
presented in Table VII and Fig. 15. Note that the presence of
a membrane occupying 10–20% of the total volume reduces
the diffusivity by a factor of 2. This is due to the tortuous
pathways through which the diffusing species must migrate.
In contrast to three cases considered above, the upper bound
does not provide a good estimate ofse for model III
(s50.5!.

VI. EFFECT OF MICROSTRUCTURE ON PROPERTIES

The precise role of microstructure in determining the
macroscopic properties of composite media has been the

TABLE IV. Effective conductivity of several two-level cut GRF’s for the cases1,2510,1.

III( s50.2! III( s50.5! I(s50.5!

p T/p se Error T/p se Error T/p se Error

0.05 4 1.28 0.01 2 1.32 0.02 2 1.27 0.00
0.10 4 1.51 0.02 2 1.64 0.03 2 1.53 0.02
0.15 4 1.76 0.04 2 1.96 0.05 2 1.77 0.02
0.20 4 2.02 0.06 4 2.30 0.07 2 2.05 0.01
0.25 8 2.32 0.03 4 2.58 0.10 4 2.35 0.01
0.30 8 2.61 0.04 4 2.94 0.12 4 2.67 0.01
0.35 8 2.93 0.03 4 3.30 0.13 4 3.02 0.01
0.40 8 3.25 0.05 4 3.70 0.13 4 3.40 0.02

FIG. 11. Three-point upper bound@11# on the effective shear
modulus~contrast 1:0! of five different classes of microstructure.
The data for the IOS and one-level cut GRF models are from Refs.
@34,18#.

FIG. 12. Simulation data and bounds for three different two-
level cut GRF models at contrasts1,2510,1. The thick solid line
corresponds to the bounds for the one-level cut model III~b50!.
The bounds are clearly seen to differentiate the different classes of
media at lowp.
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subject of many studies. A number of simple models of pore
shape have proposed to determine, for example, the effect of
pore-size distribution@20#, pore roughness@42#, and pore
geometry@21# on transport in porous rocks. Simple micro-
mechanical models@43# have also been studied to ascertain,
for example, the effect of inclusion shape@44# and cell struc-
ture @4,45# on the mechanical properties of composites. In
this section we investigate how morphology influences the
properties of realistic model composites.

To simplify the discussion we summarize relevant data
for a variety of GRF’s and particulate microstructure models
in Table VIII. We consider systems of 1:0 contrast at
p50.2. This case corresponds to a conducting~mechanically
strong! matrix in an insulating~weak! medium~e.g., foamed
solids @30#!. This contrast also corresponds to low porosity
conducting pores in an insulating medium~e.g., porous
rocks!. To gauge the effect of microstructure on material
properties we assume that the upper bound on each property
provides an estimate of its actual value. A comparison of
su andse ~where available! shows that this is generally true
@46#. Note, however, that if the difference betweensu for
each of the models is small@e.g., IOS voids and model III
(s50.2! and examples in Ref.@18## such an assumption can-
not be made (su

a.su
b, but se

a,se
b).

At a 1:0 contrast the effective properties only differ from
zero if the composite is macroscopically connected~i.e., per-
colative!. At p50.2 this condition is satisfied for all but one
of the media~conducting spheres in an insulating medium!.
Above this threshold the magnitude of the macroscopic prop-
erties is then governed by the shape of the inclusions. It is
clear from Table VIII that sheetlike structures provide higher
conductivity and mechanical strength than those with a node-
bondlike character. To elucidate the role of inclusion shape
we derive approximate expressions for the effective conduc-
tivity of periodic media with unit cells of each type in Ap-
pendix E. For small volume fractions (p!1) the node-bond
model has se.p2s1 and the sheetlike model hasse
. 2

3ps1 in qualitative agreement with the data. Interestingly
the periodic sheet model provides a surprisingly good esti-
mate of se5

2
30.250.133 for model III(s50.5!

(se50.130).
From Table VIII it also evident that interfacial roughness

plays an important role in determining properties. Consider
the two-level cut fields I(s50.5! and III(s50.5!. In Figs. 7~i!
and 7~l! it is clear that both models contain sheetlike pores.
The differences are then due to the interfacial roughness.

This is confirmed by comparing the relative values ofsu for
model I in the casesK58 ~smooth on scales below
lmin52p/8) andK5` ~rough on all scales!; see Appendix
B. The effect of increasingK from 8 to 32 on the morphol-
ogy of model I(s50.5! can be seen by comparing Figs. 7~i!
and 16~a!. In the rough model the sheetlike pores are thinner
and a large proportion of pore space is distributed in protru-
sions. As these protrusions contribute little to the overall
conductance~or strength!, this significantly reduces both
conductivity and strength. This also explains why model III
is more conductive~stronger! than model I. The much
smaller effect of roughness on morphology of one-level cut
fields can be seen by comparing Fig. 7~d! and Fig. 16~b!: the
basic inclusion shape is less affected than in the two-level cut
case.

Now consider the data for the spherical particulate media
in Table VIII. The hollow sphere model appears to be more
conductive, or stronger, than the IOS voids~Swiss cheese!
model. This is due to the fact that the former model has an
approximately sheetlike character~Fig. 6! in contrast to the
node-bondlike structures@2# apparent in the inverse IOS
model. The IOS model atp50.2 does not have a sufficient
density of spheres to provide a percolative pathway.

FIG. 13. Simulation data and bounds for three different two-
level cut GRF models with conductivitys1,2550,1.

TABLE V. Effective conductivity of several two-level cut GRF’s for the cases1,2550,1.

III( s50.2! III( s50.5! I(s50.5!

p T/p se Error T/p se Error T/p se Error

0.05 4 2.3 0.2 2 2.6 0.2 1 2.1 0.1
0.10 4 3.4 0.4 2 4.1 0.4 1 3.3 0.1
0.15 8 4.1 0.1 2 5.7 0.5 1 4.2 0.1
0.20 8 5.1 0.2 2 7.4 0.7 1 5.4 0.1
0.25 8 6.4 0.2 4 9.3 0.2 2 7.0 0.1
0.30 8 7.8 0.2 4 11.2 0.3 2 8.6 0.1
0.35 8 9.3 0.3 4 13.2 0.3 2 10.4 0.2
0.40 8 10.9 0.4 4 15.3 0.3 2 12.3 0.2
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VII. CONCLUSION

In this paper we have derived the three-point statistical
correlation functions for two models of random composite
media. The results were applied in the evaluation of bounds
on the effective conductivity and elastic moduli of each
model. In addition the ‘‘exact’’ effective conductivity was
estimated for the two-level cut GRF model by direct simula-
tion. The models are applicable to physical composites that
remain percolative at very low volume fractionspc,1%.
These include solid foams, porous rocks, membranes, and
sintered hollow glass spheres. In contrast, previously em-
ployed models of microstructure have percolation thresholds
of order 10%.

Microstructure was demonstrated to have a strong influ-
ence on the effective properties of composites. The relative
variations among the two-level cut, IOSA, and one-level cut
models were attributed to three morphological factors: pore
shape, interfacial roughness, and percolation threshold of the
material. Materials with sheetlike inclusions were shown to
have a significantly greater conductivity~strength! than ma-
terials with node-bondlike inclusions. By comparing the mi-
crostructure parameters of similar composites with frac-

tally rough and relatively smooth inclusions we found that
interfacial roughness decreased composite conductivity and
strength. The observation was confirmed by directly compar-
ing simulated values ofse for model I(s50.5! ~sheetlike and
rough! and model III(s50.5! ~sheetlike and smooth!. The
behavior was physically attributed to the fact that the protru-
sions of rough interfaces contribute little to effective proper-
ties.

The models discussed here considerably expand the range
of systems to which bounds can be applied. To facilitate use
of these bounds we have tabulated cross sections and micro-
structure parameters for a number of different variants of
each model. Such bounds have two clear applications. First,
they can be used to narrow the possible microstructures of a
composite for which properties are known; composite mate-
rials may violate the bounds for a particular model system.
Indeed for certain cases of realistic media the bounds are
mutually exclusive~see Fig. 12!. Second, the upper bound is
often a very useful estimate of the actual property. Indeed,
for model III(s50.5! the upper bound provides an excellent
estimate of the effective conductivity over the full range of
volume fraction measured.

The simulational data presented here allows a comparison
of model properties with those of physical composites
@30,41,47#. Furthermore, the data can be used to assess both
predictive theories forse and higher-order bounds. We note
that the four-point correlation functions of the two models
considered here can be calculated and hence used to evaluate
known four-point bounds@11,48#. Finally, we remark that
the generalization of the IOS model to include the case of
hollow spheres broadens the utility of the model as a bench-
mark theoretical tool, as well as providing a realistic model
of certain composites.

APPENDIX A:
THE LEVEL CUT GAUSSIAN RANDOM FIELD

In this appendix several results are derived that are useful
for calculating then-point correlation function of a material
defined by level cut~s! of a Gaussian random field
@19,25,26#. The joint probability density~JPD! of a Gaussian
random field isPn(y1,y2, . . . ,yn)5@(2p)nuGu#21/2exp(2
1
2y

TG21y), where the elements of G are
gi j5g(r i j )5^y(r i)y(r j )& @49#. The functiong has the prop-
ertiesg(0)51 and limr→`g(r )→0. By definition we have
pn5*a

bdy1•••*a
bdynPn(y1 ,y2 , . . . ,yn). Note that, in this

TABLE VI. Effective conductivity of several two-level cut GRF’s for the cases1,251,0.

III( s50.2! III( s50.5! I(s50.5!

p T/p se Error T/p se Error T/p se Error

0.05 4 0.018 0.002 2 0.034 .003 2 0.011 0.003
0.10 4 0.030 0.004 2 0.061 .003 2 0.044 0.005
0.15 4 0.050 0.005 2 0.095 .003 2 0.058 0.007
0.20 4 0.073 0.007 4 0.130 .004 2 0.078 0.009
0.25 8 0.094 0.004 4 0.165 .005 4 0.111 0.004
0.30 8 0.121 0.003 4 0.204 .005 4 0.141 0.004
0.35 8 0.154 0.003 4 0.245 .006 4 0.177 0.007
0.40 8 0.190 0.002 4 0.287 .007 4 0.219 0.006

FIG. 14. Simulation data and bounds for conductivity contrast
s1,251,0. The models and contrast are relevant to solid foams@30#
and porous rocks@47#.
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form, pn is difficult to evaluate. For example, ifgi j.1 for all
i , j thenuGu.0 (n.1). It is possible to avoid such problems
and reduce the number of integrations required by taking the
following approach.

Expanding Eq.~2.1! gives terms of the form

Ln~g,a!5K )
i51

n

H~yi2a i !L , ~A1!

where g5(g12, . . . ,g(n21)n), a5(a1 , . . . ,an), and thea i
are equal toa or b. The analysis that follows relies on an
integral representation of the Heaviside function

H~y2a!5
21

2p i ECe2 iw~y2a!
dw

w
, ~A2!

where the contourC lies along the real axis, except near the
origin, where it crosses the imaginary axis in the upper half
plane.

Now we turn to the evaluation of the terms~A1!. For the
casen51 we haveG5g1151 so

L15^H~y12a1!&5
1

A2p
E

a1

`

e2~1/2!t2dt. ~A3!

Now considerL2. In this case the matrixG in the JPD is

G5Fg11 g12

g21 g22
G5F1 g

g 1G , ~A4!

with g5g125g21 and uGu5A12g2. Using the Heaviside
function and interchanging the order of integration gives

L25
1

uGu~1/2~2p i !2
E
C

dw1

w1
E
C

dw2

w2
eiw

TaE
2`

`

dy1E
2`

`

dy2

3e2~1/2!yTG21y2 iwTy

5
1

~2p i !2EC
dw1

w1
E
C

dw2

w2
eia

Tw2~1/2!w1
2
2w1w2g2~1/2!w2

2
.

In this case we differentiate with respect tog,

]L2

]g
52

1

~2p i !2E2`

`

dw1E
2`

`

dw2e
2~1/2!aTGa1 iaTw

~A5!

and perform the integrals with respect towi . The result is
simply integrated to giveL2 ~up to a constant!,

L25
1

~2p!
E
0

g dt

A12t2
expS 2

a1
222a1a2t1a2

2

2~12t2! D .
~A6!

The derivation ofL3 follows similar lines: The initial inte-
gration over theyi gives

L35
21

~2p i !3EC
dw1

w1
E
C

dw2

w2
E
C

dw3

w3
e2~1/2!wTGw1 iwTa.

~A7!

For this case uGu512g12
2 2g13

2 2g23
2 12g12g13g23 and

wTGw5w1
21w2

21w3
212w1w2g1212w1w3g1312w2w3g23.

Taking the derivative of Eq.~A7! with respect tog12 gives

]L3

]g12
5

1

~2p i !3EC
dw3

w3
e2~1/2!w~2/3!2 ia3w3E

2`

`

dw1E
2`

`

dw2

3e2~1/2!ŵT Ĝ ŵ1i ŵ Tu, ~A8!

TABLE VII. Effective conductivity of several two-level cut GRF’s for the cases1,250,1.

III( s50.2! III( s50.5!

p T/p se Error T/p se Error

0.10 4 0.66 0.02 2 0.55 0.05
0.15 4 0.62 0.02 2 0.49 0.06
0.20 4 0.58 0.02 2 0.43 0.07
0.25 8 0.53 0.01 4 0.34 0.05
0.30 8 0.50 0.01 4 0.29 0.05
0.35 8 0.47 0.01 4 0.24 0.04
0.40 8 0.44 0.01 4 0.20 0.03

FIG. 15. Simulations ofse and the bounds fors1,250,1. This
contrast is relevant to modeling transport in membranes.
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where ŵ5(w1 ,w2), u5(u1 ,u2)5(a11 ig13w3 ,a2
1 ig23w3), and

Ĝ5F 1 g12

g12 1 G . ~A9!

Performing the standard integrals with respect tow1 and
w2 gives

]L3

]g12
5

1

2p

1

A12g12
2
expS 2

a1
222a1a2g121a2

2

2~12g12
2 !

D
3S 21

2p i D ECdw3

w3
e2~1/2!nw21 ikw, ~A10!

wheren5uGu/(12g12
2 ) and

k5a32
a1~g132g12g23!2a2~g232g12g13!

12g12
2 . ~A11!

Now the remaining integral can be reexpressed to give

]L3

]g12
5

1

~2p!

1

A12g12
2
expS 2

a1
222a1a2g121a2

2

2~12g12
2 !

D
3

1

A2p
E
F12

`

e2~1/2!t2dt, ~A12!

where F125k/An. Similar expressions can be derived for
]L3 /]g12, and ]L3 /]g23. These are denoted by
Ai j (g,a)5]L3 /]gi j . With kÞ i or j we can also write a
general expression forFi j ,

Fi j5A12gi j
2

uGu S ak2
a i~gik2gjkgi j !1a j~gjk2gikgi j !

12gi j
2 D .

The results can be formally integrated to give, up to a con-
stant,

L3~g,a!5E
0

1

dt@g12A12~ tg,a!1g13A13~ tg,a!

1g23A23~ tg,a!#. ~A13!

The results forL i are employed in the text to derive the
statistical correlation functions.

APPENDIX B: FRACTAL SURFACE DIMENSION

Berk @25# has shown that the class of level cut GRF mod-
els with spectrar(k).(a/4p)k22e23 as k→` ~0,e,1!
have field-field correlation functionsg(r ).12br2e and sur-
face fractal dimensionDs532e. Herea andb are related
constants. In this appendix we show how the finite cutoff
wave numberK effects the roughness~fractal! properties of a
GRF interface. Through a very elegant argument Debye
et al. @50# showed that the surface to volume ratio (S/V) of
a porous solid was related to the two point correlation func-
tion by

TABLE VIII. Qualitative comparison of microstructure and macroscopic properties. We consider the contrast 1:0 at a representative
volume fractionp50.2.su , ku , andmu are upper bounds on the effective conductivity@7#, bulk @8# and shear modulus@11#, respectively.

Model Microstructure pc se z1 h1 su ku mu

III( s50.5! smooth, sheetlike 0 0.130 0.819 0.621 0.134 0.115 0.094
I(s50.5! K58 rough, sheetlike 0 0.078 0.628 0.473 0.122 0.102 0.081
III( s50.2! smooth, node-bond-sheetlike 0 0.073 0.574 0.426 0.118 0.098 0.077
I(s50.5! K5` very rough, sheetlike 0 0.449 0.402 0.106 0.086 0.068
I(b50!a K5` very rough, node-bondlike 0.366 0.333 0.096 0.076 0.060
I(b50!a K58 rough, node-bondlike 0.07 0.027 0.326 0.291 0.090 0.071 0.054
III( b50!a smooth, node-bondlike 0.13 0.026 0.237 0.197 0.074 0.057 0.042

IOSA (r 050.9) hollow spheres 0.09 0.759 0.533 0.131 0.117 0.090
IOS voids Swiss cheese 0.03b 0.076c 0.518d 0.416d 0.113 0.093 0.073
IOS spheres 0.30e 0 0.113d 0.148d 0.044 0.032 0.026

aReference@18#.
bReference@40#.
cReference@57#.
dReferences@1,34#.
eReferences@2,39#

FIG. 16. Cross sections of two models based on spectrum I. This
figure shows the roughness of the interface for largeK @compare
Figs. 7~i! and 7~d!#.
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24p28~0!5
S

V
. ~B1!

Now considerp2 for the general two-level cut Gaussian ran-
dom field. The most instructive method of examining
p28(0) is by generating an expansion for smallr . Thus we
write

p2~r !5p2
1

2pE12d

1 dt

A12t2
f ~ t !, ~B2!

whered(r )512g(r ) and f (t) is a suitably defined function.
Integrating by parts and retaining leading-order terms gives

p2~r !.p2A2d~r ! f ~1!/2p, ~B3!

with f (1)5exp(2a2/2)1exp(2b2/2). Now if d(r )
5O(r 2), then the specific surface is well defined and
p28(0) can be evaluated. However, for the class of spectra
considered by Berk@25# d(r ).br2e so

p2.p2A2b f~1!r e/2p. ~B4!

Thereforep28(0) and the specific surface (S/V) are infinite.
Bale and Schmidt@51# have shown that this type of singular
behavior implies a fractal surface. The fractal dimension
Ds is given in terms of the correlation function through the
relation p2(r ).p2cr32Ds with c some constant. We infer
from Eq.~B4! that our model I (e51/2) has a fractal surface
with Ds52.5.

As discussed in@18#, it is necessary to introduce a finite-
cutoff wave numberK for computational and physical rea-
sons. We now show how this parameter changes the micro-
structure. The wave numberK corresponds to a cutoff
wavelengthlmin52p/K, which specifies the scale of the
smallest ‘‘ripples’’ on the surface. Thus we expect the sur-
face area to scale as a fractal down to some length scale
related tolmin . This can be confirmed mathematically by
considering the smallr behavior ofp2@g K(r )#.

For arbitraryr , g K(r ) can be expressed in terms of the
moments ofk. Using a Taylor series expansion for sinkr in
the definition ofg K ~2.2! we have

g K~r !512
1

6 S E
0

K

4pr K~k!k4dkD r 21O~K3r 2!

'12
1

6
^k2&r 2,

where the latter approximation is valid ifr!lmin . Substitut-
ing this result into the expansion forp2 ~B3! and using rela-
tion ~B1! gives @19,26#

S

V
5
2

p
A^k2&

3
~e2~1/2!a21e2~1/2!b2!. ~B5!

Thus, forr!lmin the surface is behaving in a regular manner
(Ds52), as anticipated. Note that for the caseK→` and
e,1 the moment̂ k2& diverges and this approximation does
not apply.

To examine the behavior forr.lmin we can successively
integrate~2.2! by parts@18# to obtain

g K~r !.
g`~r !

P
2

a

PK2e ~B6!

3 S cosKrK2r 2
1
3sinKr

K3r 3
1O~K24r24! D .

If Kr.1 this expansion is asymptotic tog K @52#. Now in the
regionlmin!r!1 the algebraic terms in the expansion are
negligible andg K.g.(12br2e)/P ~with P.1).

In summary we have

p2~r !'H p2SA1
3 ^k2&

f ~1!

2p D r , 0<r!lmin

p2SA2bf ~1!

2p D r e, lmin!r!1.

~B7!

This demonstrates the regular (Ds52) nature of the surface
in the former region and the fractal behavior (Ds532e)
over the spatial scales in the latter region.

APPENDIX C: INTERSECTION VOLUME OF TWO
AND THREE SPHERES

The intersection volumeVImn
(2) (d) of two spheres of radii

m and n separated by a distanced is simple to calculate.
With r 15min(m,n) and r 25max(m,n) VI

(2)54pr 1
3/3 if

0<d,r 22r 1, VI
(2)50 if r 21r 1<d,` and

VI
~2!52p~r 1

31r 2
3!/32p~r 1

2x11r 2
2x22

1
3 x1

32 1
3 x2

3!
~C1!

if r 22r 1<d,r 21r 1. Here x15(d21r 1
22r 2

2)/2d and
x25d2x1.

A compact form of the intersection volume of three
spheres of equal radii (r51) has been derived previously by
Powell @53#. Several of the key simplifications in the deriva-
tion formula are not possible when the spheres have different
radii. However, a less elegant but straightforward result can
be determined. Suppose the spheres have radiir A , r B , and
r C and are distancesa, b, andc apart and that there exist two
unique pointsP and Q where the surface of the spheres
meet. From Powell@53# the intersection volume of the three
spheres is equal to twice the following expression~Powell’s
theorem!:

2~the volume of the tetrahedronPABC)
2~the volume of the sphere centerA enclosed by the faces of
the tetrahedronPABC that meet atA)

2~the volume of the sphere centerB enclosed by the faces of
the tetrahedronPABC that meet atB)

2~the volume of the sphere centerC enclosed by the faces of
the tetrahedronPABC that meet atC)

1~the intersection volume of the spheres centered atB and
C enclosed by the two faces of the tetrahedronPABC that
meet inBC)

1~the intersection volume of the spheres centered atC and
A enclosed by the two faces of the tetrahedronPABC that
meet inCA)
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1~the intersection volume of the spheres centered atA and
B enclosed by the two faces of the tetrahedronPABC that
meet inAB).

The cases where there is no unique point of intersection
between the spheres is discussed below. We first define a
coordinate system with origin at the center of sphereC as
drawn in Fig. 17~a!. By solving the equations of the three
spheres simultaneously it is simple to show that

xP5
a22r B

21r
C
2

2 a
, ~C2!

yP5
2b21r A

22r C
212bcosCxP

2bsinC
, ~C3!

zP5Ar C22xP
22yP

2 . ~C4!

It is also necessary to know the distancesaB ,aC , . . . , given
in Fig. 17~a!. We have aC5(a21r C

22r B
2)/(2a),

bA5(b21r A
22r C

2 )/(2b), cB5(c21r B
22r A

2)/(2c), aB5a
2aC , bA5b2bC , andcA5c2cB .

The volume of the tetrahedron isVT5 1
6absinCzP . The

solid anglefA of the tetragonal wedge atA @see Fig. 17~b!#
can be calculated by using the fact thatfA5(E1F
1D2p) and

cosD5
cosd2cosecosf

sinesinf
~C5!

~similarly for cosE and cosF). This gives

fA5cos21S cA2cosAbA

sinAAr A22bA
2 D 1cos21S r A

2cosA2bAcA

Ar A22bA
2Ar A22cA

2 D
~C6!

1cos21S bA2cosAcA

sinAAr A22cA
2 D 2p. ~C7!

Similar results are obtained for the solid anglesfB and
fC .

It is critical to know whether the point (xP ,yP) lies inside
or outside each of the faces of the triangle. This can be done
by defining the variables

sA5sgn~2yP!, ~C8!

sB5sgn~cosCyP1sinCxP!, ~C9!

sC5sgn~cosByP2sinBxP1asinB!. ~C10!

Then, for example,sA561 as the point (xP ,yP) is inside or
outside face a of the triangle ABC. In the case
r A5r B5r C51 @53# we have xP5a/2 and
yP52ccosA/2sinC, so thatsA5sgn(cosA), sB5sgn(cosB),
and sC5sgn(cosC), as they should. The wedge angle asso-
ciated with the intersection volume of spheresB andC is

uA5cos21S sAAr B22aB
22zP

2

Ar B22aB
2 D ~C11!

~similarly for the anglesuB anduC ).
Now the volume of a tetragonal wedge of solid anglef is

r 3f/3 and the intersection volume of spheres enclosed in a
wedge of angleu is uVI

(2)/2p. Therefore, by Powell’s theo-
rem,

VIxyz
~3! ~a,b,c!5VT2

2

3
x3fA2

2

3
y3fB2

2

3
z3fC1

uA
p
VIyz

~2!~a!

1
uB
p
VIxz

~2!~b!1
uC
p
VIxy

~2! ~c!. ~C12!

Herex5r A , y5r B, andz5r C . This formula is equivalent to
Powell’s result@53# in the casex5y5z51.

Several other cases arise if the pointP does not exist.
Some of these are illustrated in Fig. 18. Either two~or more!
of the spheres are disconnected~not illustrated!, they are
connected butVaI

(3)50 @Fig. 18~b!# or the intersection vol-
ume is given by that of two of the spheres@Fig. 18~c!# or
some other formula@Fig. 18~d!#.

APPENDIX D: DERIVATION OF z1zp50 „IOSA…

It is possible to develop an independent check on the cal-
culation of z1 for the IOSA model by direct calculation of
se . Using the framework of Reynolds and Hough@54# gives

FIG. 17. Geometrical elements used in the calculation of the
intersection volume of three spheres of different radii. The axis and
nomenclature are those employed in the text.~a! The tetrahedron
base and~b! the sphere centered atA enclosed by three faces of the
tetrahedron.
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se5s21~s12s2!p f1 , ~D1!

wheref 15Ē1 /Ē. HereĒ1 is the average of the field through-
out phase 1 andĒ is the applied field. While the above for-
mula is exact, it is only possible to evaluateE1 approxi-
mately. In the low concentration regime (p!1) E1 is the
field within a hollow sphere~conductivitys1) embedded in
an infinite medium~conductivitys2) subject to an applied
field Ē. To determine this field we consider a more general
problem where the conductivities of the innermost spherical
region (0<r,r 0), the annulus (r 0<r,r 1), and the enclos-
ing medium (r 1<r,`) aresa , sb , andsc , respectively.
The potential of the field satisfies Laplace’s equation and
charge conservation boundary conditions at phase bound-
aries. Using standard techniques it is possible to show that,
in each region, the potential has the form
fd5(Adr1Bdr

22)cosu with d5a, b, or c. Applying the
appropriate boundary conditions on each of the faces of the
hollow sphere gives

Aa529s3Ē/H, Ba50, Ab523s3Ē~21x!/H,

Bb523r 1
3Ē~12x!/H, Ac52Ē,

Bc52r 1
3Ē@~12x!~112y!1s3~21x!~12y!#/H,

where H52(12x)(12y)1s3(21x)(21y), x5sa /sb ,
y5sb /sc , and s5r 1 /r 0. For the desired value off 1,
sa5sc5s2 and sb5s1. Considering volume averages of
the field leads to

~ f 1!z52
Ab

Ē
5

3s3s2~2s11s2!

s3~2s11s2!~2s21s1!22~ds!2
,

~D2!

where ds5s12s2 and (f 1)x5( f 1)y50. Now expanding
Eq. ~D1! in powers ofds gives

se.s21~ds!p2
1

3s2
~ds!2p1

21s3

9s3s2
2 ~ds!3p. ~D3!

Similarly, Brown’s formula@55# to the same order gives

se.s21~ds!p2
1

3s2
~ds!2p1

112z1
9s2

2 ~ds!3p. ~D4!

Equating similar terms leads toz1up505s235r 0
3/r 1

3. Points
representing this result are plotted in Fig. 8 and confirm prior
calculations ofz1. It should also be possible to calculate the
first-order correction]z1 /]pup50 by calculating se to
O(p2) @38,56#. Sincez1 is observed to have a linear behav-
ior over a wide range ofp @38# ~see Fig. 8! this would pro-
vide a good estimate ofz1. Also note thath1up50 can be
derived using similar methods.

APPENDIX E: PERIODIC CELL MODELS

To explicitly demonstrate the effect of pore shape on ef-
fective conductivity we estimatese for several periodic net-
works exhibiting sheetlike, gridlike, and node-bondlike cells.
Consider a structure comprised of periodic repetitions of the
unit cell shown in Fig. 19~a!. Definingx5h/H, the volume
fractions of each phase are given byp512(12x)3.3x and
q5(12x)3.123x. Consider the behavior of the model if
s1@s2. In this case most of the current would flow through
the solid faces of the cell that are aligned in the direction of
current flow. The volume fraction of these elements of the
cell is p152x2x2. The remaining current would pass
through a layer of phase 1@volume fractionp25x(12x)2#
and the cell core of phase 2~volume fractionq). Treating
each of these mechanisms as conductors in parallel we have
se5p1s11(p21q)s* , where s* is conductivity of the
central leakage pathways. Assuming each of the elements of
these pathways act as conductors in series gives
s*5(p21q)(p2s1

211qs2
21)21. This leads to

FIG. 18. Several of the topologically distinct cases that arise in
the calculation of the intersection volume of three spheres of differ-
ent radii.

FIG. 19. Periodic cellular models:~a! Sheetlike cell and~b!
bond-nodelike cell.
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se5~2x2x2!s11
~12x!2s2

x~s2 /s1!1~12x!

.s21
2

3
ps12

1

3
ps2S 11

s2

s1
D ,

where the approximation holds forp!1. Finally, se
.2

3s1p in the cases250.
In a similar way a ‘‘toy’’ model can be defined to quali-

tatively demonstrate the effect that necks or throats have on

the effective conductivity. A cross section of the unit cell of
a node-bondmodel is shown in Fig. 19~b!. The central cube
has side lengthxm and the six arms have a square cross
section of side lengthx. Taking the cell to have unit width
we have p5x3m13(12xm)x2 (m<1) and q512p. If
s250 then most of the current will flow through the bonds
parallel to the direction of the applied field. Therefore,
se.s1x

2. In the casem51 a uniform grid results and
se.

1
3ps1 to leading order inp. For m51/3 a node-bond

geometry results andse.p2s1.
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