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Structure-property correlations in model composite materials
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We investigate the effective propertiésonductivity, diffusivity, and elastic modyliof model random
composite media derived from Gaussian random fields and overlapping hollow spheres. The morphologies
generated in the models exhibit low percolation thresholds and give a realistic representation of the complex
microstructure observed in many classes of composites. The statistical correlation functions of the models are
derived and used to evaluate rigorous bounds on each property. Simulation of the effective conductivity is used
to demonstrate the applicability of the bounds. The key morphological features that effect composite properties
are discussedS1063-651X96)06308-9

PACS numbgs): 5.40+j, 44.30+v, 72.15.Eb, 62.20.Dc

I. INTRODUCTION two-phase compositd§—11]. To evaluate these bounds for
a given system it is necessary to know the three-point statis-
The prediction of effective properties of heterogeneoudical correlation functior{12]. Due to the difficulty of mea-
systems such as porous media and two phase compositesSiing this informatior{13—15, a number of model media
of considerable interegtl—3]. Understanding the interrela- h@ve been proposed for which the functions can be explicitly
tionships between rock properties and their expression iﬁV%'ugted- These .|n|clude cellulpte], pa:jmcglate[hl], and
geophysical and petrophysical data is necessary for enhaanS”? IC[k1)I7] mat_t;:rrllatlhs[e.g., thsl' 1_a) tarl1nt tjr(1 )] T elprln-
characterization of underground reservoirs. This understanog—:I'E)T]‘F’;)Iil?igj r?ar;rev!entatieosr?s rgfoth?asinlslusia(m peo); eeg:rrijgzjr(;ver-
ing is crucial to the economics of oil and gas FECOVery, 9€0pserved in many natural and manufactured composite ma-
thermal energy extraction, and groundwater pollution abate;

: terials.
ment. Manufactured composites such as foamed spiils Recently, we derived the properties of a model of amor-

and polymer blendg5] often exhibit a complex microstruc- 0o materiald18] [e.g., Fig. 1c)] based on level-cut
ture. To optimize the properties of these systems it is necegsayssian random fieldgl9] (GRF'S). Although the GRF
sary to understand how morphology influences effectivenodel is applicable to many classes of nonparticulate com-
properties. In general, the difficulty of accounting for micro- posite materials, it cannot account for materials that remain
structure has made exact prediction impossible in all but thgercolative at very low volume fractions.

simplest of cases. Porous rock$3,20], polymer blendg5], solid foamsg[4],

On the other hand, considerable progress has been magad membranes provide examples of systems where a single
in the derivation of rigorous bounds on a host of propertiegpphase remains connected down to low volume fractions. The
[1,6]. For example, relatively accurate bounds have been depercolation threshold of a system is only one factor that de-
rived for the elastic moduli and conductivity of isotropic termines its effective properties: The shape of the pores and

inclusions should also be considerg2il—23. Polystyrene

FIG. 1. Models of composite microstructurf@) Periodic models, regular array of spherés; particulate models, identical overlapping
sphereg10S), and (c) Gaussian random fiel@fGRF) models, single-level cut variant. None of the models can mimic the microstructure
observed in percolative low volume fraction materi@dsy., polystyrene foam, Fig,.2
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conductivity are compared with the resultant bounds. In Sec.
VI we discuss the influence of morphology on the transport
and mechanical properties of composites.

Il. THE TWO-LEVEL CUT GRF MODEL

As in [18] we takey(r) as an isotropic Gaussian random
field with a given field-field correlation function
(y(ri)y(rj))=gk(rij). Here rij=|r;—r;| and for conve-
nience we denotg k(ri;) by gj;, or simplyg if no ambigu-
ity arises. Following Berk19] it is possible to define a com-
posite medium with phase 1 the region in space where
a<y(r)=<p. The remaining region is phase 2. In the limit
B— o the one-level cut GRF considered in Ref$8,24 is
recovered. Then-point correlation function is given by

n
FIG. 2. Morphology of polystyrene foam. Dn(F 1 F) = |Hl [H(yi—a)—H(yi—,B)]>,
foam, an example of a highly porous material, is shown in (2.7
Fig. 2. The complex solid phase has a sheetlike character
quite different from that found in cellular, particuldte], and ~ whereH(y) is the Heaviside function ang =y(r;).
single-level cut GRF14,18 models(Fig. 1). It is clear that The microstructure of the material is fully determined by
current models of composite microstructure cannot accourgpecifyinga, 8, andg ¢(r). The latter quantity is related to
for the percolative and morphological characteristics obihe spectral density of the field (k) by a clipped Fourier
served in porous rocks, solid foams, membranes, and polyansform

mer blends. ik
In this paper we describe models that give a realistic rep- (X 5 SINKT
resentation of the microstructure observed in many classes of gk(r)= 0 A4mkp k(K) kr dk. 22

composite materials and remain percolative at very low vol-

ume fractions. Variational bounds and computer simulationt was shown in[18] that few differences arise among the
are used to estimate the influence of morphology on diffusivgonductivity of the one-level cut Gaussian random fields de-
transport and elastic properties. The first model is an exterfined with differing spectra. Therefore we employ two model

sion of the Gaussian random field model considered in @naterials that showed the greatest variation in properties. In
previous papefl8]. In this case the interface between the the notation of18] these are model |,

composite phases is defined by a tw@ther than one-evel

cut of a GRF[19,24—-2§. The freedom in choosing the po- p(K)=P 17 2[(1—1v?+Kk?)%+ 41771, (2.3

sition of the cutgfor a given volume fractionand the spec-

tra of the model allows a rich variety of morphologies to be sinur

modeled. By qualitatively comparing these morphologies to limgy(r)=e™" : (2.9
; X vr

those observed in physical systems the models can be asso- K=o

ciated with classes of physical composites. ) o

A second highly porous model can be obtained by gener\_/\/here P is a normalization constant chosen to ensure
alizing the well-known identical overlapping sphefi©S) ~ 9«(0)=1, and model I,
model [1] to include the case of arbitrarily thin hollow 3
spheres. This model is applicable to a class of ceramics and _ _
foams fabricated from hollow spheres: a composite that pos- p(k)= 4m(us—1) [H(w)=HDT (p>1), 29
sesses excellent uniformity and proper{i2g).

To study the properties of these media we evaluate 3(sinur — urcosur —sinr +rcog)
bounds on the effective conductivity and elastic moduli. The g(r)= (1) . (28
key microstructure parameterg;(and »;) that occur in the
derivation of the boundl2] are tabulated along with illus- N normalization constant is necessary in this model pro-
trations of the model morphologies. In addition we use &igeq thatk = . In following sections we employ spectrum
finite d|ff§rence_ scheme to directly simulate the gffec.tl_vel (v=0, K=00), spectrum | ¢=0, K=8), and spectrum Il
o1 the bocinds and on their uss for predicive purposes. (= -9). In his paper the physical parameterand . are

P purp not varied and will no longer be explicitly stated.

The paper is organized as follows. In Sec. Il we derive the |, 1o potation of Appendix A the one-point correlation
three-point correlation function for the two-level cut Gauss-¢nction (or volume fractiof is just

ian random field. In Sec. Il analogous results are derived for
the identical overlapping spherical anndiDSA) or hollow 1 (s
sphere model. In Secs. IV and V the microstructure param- p=A(a@)—A(B)= _J e~ (124t 2.7
eters are calculated and computer simulations of the effective N

a



54

The two-point correlation function for the two-level cut
Gaussian random field is

p2:p2+A2(g,a,a)—2A2(g,a,,3)+A2(g,,8,B),
(2.8

where we have used the fact that(g,«,8)=A5(g,8,a)
andp,(g=0)=p?. Now using Eq.(A6) leads to[25]

o

1 a?—2apt+p2
2 (1-t?

2

1 (9 dt a

—n2a -
- o

Similarly the three-point correlation function is

2

1+t

|

(2.9

ps= p3+A3(g!a!ara)_A3(gva!a1:8)_A3(g!arﬂ:a)
—A3(g,ﬁ,a,a)+A3(g,a,,3,B)+A3(g,,8,a,,8)
+A3(9,6,8,a)—A3(9,6,8.8), (2.10

where A5 is given in Eq.(A13) andg=(012,013,923). We
could find no symmetries in these terms to allow analytica
or computational simplification of the results.

For our purposes it is necessary to choasand 8 for a
given value of the volume fractiop. There are many ways

that this can be done. An obvious method is to require that a

equivalent fraction of phase 1 lies on either side of a particu
lar level cuty(r)=y. We classify these “symmetric” mod-
els by the parameter

1 ©
s=——| e W2t

(2.11
27ty

so thatse[0,1]. For a given volume fractiop, «, andg are

defined through the relations

p

~ (12§ = LJBe*ﬂ/ZﬂZdt_ (2.12
2 2mJy

1 J7
=—| e
N2mJa

Materials defined in this manner are denoted, for example,

by llI(s=0.5). This indicates that the spectrum of model IlI
is employed and thas=0.5 (corresponding to the case
a=— ). For comparison with the one-level cut case dis-
cussed irf18] it is also useful to define a two-level cut GRF
that reduces to the former model in a particular limit. This is
done by fixingB and varyinga such that a given volume

fraction is achieved. These “base”-level models are speci-

fied by the value

1

b= “em w2ty

- 2mle 13

wherebe[0,1]. Sinceg is fixed, « is calculated using Eq.

(2.7). In terms of nomenclature used to describe the spectra
previously these models are denoted, for example, as llI
(b=0.3) or I(b=0) (i.e., B=). The latter case corresponds fraction

to the one-level cut field.
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FIG. 3. Interface of the media ll§=0.5) at a volume fraction of
p=0.2. The dark region is given by 0.253<y(r)<0.253. Note
the highly connected structures.

Depending on the spectra employed and the choice of

|and,8 the two-level cut GRF scheme can model a wide range

of morphologies observed in physical composites. The mor-
phology of one-level cut fields is characterized by a random
array of irregular inclusions interconnected by narrower
Hecks [18] similar to a “node-bond” geometrysee Fig.
1(c)]. This type of pore(or inclusion shape has been ob-
served in a range of materials including all¢28] and sedi-
mentary rocks[21]. Taking 8= —a in the two-level cut
model (s=0.5) leads to sheetlike structuresee Figs. 3 and

4) with differing degrees of roughness. The smooth sheetlike
structures of model II§=0.5 (Fig. 3) are similar to the
pores observed in dolomitic limestorj@9] and the con-
nected matrix in solid foamg30] (see Fig. 2 and polymer
blends [31]. The rough sheetlike morphology evident in
model 1(s=0.5 (K=8) (Fig. 4) is similar to the rough po-

FIG. 4. Interface of the media 3&0.5 with a pore volume
of p=0.2. The light region corresponds to
—0.253<y(r)<0.253.
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sponds to the phase outside the annilhe correlation func-
tions for the IOSA model(§,) are then just linear combina-
tions of q,, q,-1, etc. For example,p;,=1-q; and
P2(r12) =1—20+0x(ry).

Suppose the inner and outer radii of the annuli arand
v; then the wunion volume of a single annulus is
Va=Va{l’=4m (13— 1%)/3. The number density of the an-
nuli is related to the volume fraction of voidg] by the
formula p= —Ing/Va. The higher-order union volumes are
derived in terms of the intersection volumes of spheres of
different radii. For the union volume of two annuli a distance
d apart we have

va?(d)=2va—Va?(d), (3.3

where Val(z)(d) is the intersection volume of two annuli.
This function is given by

Va?(d)=ViZ(d) +ViZ,(d)-2VviZ(d), (34
FIG. 5. Interface of the media ll§=0.2) at a volume fraction of

p=0.2. The dark region is given by 1.28<y(r)< —0.253. with V{Z2)(d) the intersection volume of two spheres of radii
x andy (see Appendix € The union volume of the three

rous structures observed in pore-cast studies of sandstonasnuli distances, b, andc apart is

[14,21]. Note that certain classes of sandstone have been 3) @ @ @

shown to have a fractal pore surface witly~2.5[32]. This Vay'(a,b,c)=3Va-Va~(a)—Va~(b)-Va(c)

can be modeled by taking—c in spectrum [(Appendix 3

B). Qualitatively diﬁyerent gicrostructgres can be%%tained in +Va§ (@b.e), (8.9

the two-level cut scheme B+ «. For example, the mor-

_ where the intersection volume of three anniial®) is
phology of model 11I6=0.2) (Fig. 5 has both a node-bond

i i 3) _\/(3 3 3 3 3 3
and a sheetlike quality. Val )—va)w_Vl(M)W_Vf,ﬁw_Vl(VLV_Vl(v)WJFVfM)W
(3) (3)
Ill. OVERLAPPING HOLLOW SPHERES Vit Vivuu - (3.6)

A second low porosity model can be defined by generalHere the functior\/ff&z(a,b,c) is the intersection volume of
izing the 10S model to the case of IOSA. For this model thethree spheres of radi, y, andz, with a the distance between

probability thatn pointsr; chosen at random will fall in the the spheres of radiy and z, b the distance between the

void phase(i.e., outside the hollow sphepess just spheres of radix and z, and ¢ the distance between the
- spheres andy (see Appendix €
adn=exf—pVay'(ry, ...yl (3.9 As in the two-level cut GRF model there are two obvious

ways of choosing the internalr{=x) and external
HereVa(}" is the union volume oh spherical annuli with  (r =, radii for a given volume fraction. In the first the
centers at; andp is the number density of the annuli. internal radii of the spheres is held fixed and the number
To see this consider a large region of the composite madensity of spheres is increased to achieve a given volume
terial of volumeV that containdN= pV randomly positioned  fraction. This model morphology corresponds to manufac-
(i.e., uncorrelatedspherical annuli. Now considey, defined  tured materials comprised of sintered similarly sized hollow
above. If and only if the center of an annulus is locatedsphereg27]. A plot of the interface for the IOSA model is
within the volumeVa{’ will one (or more of then points  given for the case,= 0.8 andp=0.2 in Fig. 6. Using results
then lie in the solid phase. Since each annulus is uniformly1,35—-37 developed for overlapping solid sphefes., |09
distributed the probability that its center will not fall in the it is possible to incorporate a distribution of sphere sizes in
volumeVa{" is (1—Va{/V). Now there aré\ such uncor- the hollow sphere model. However, polydispersity effects
related spheres so have been shown to be quite sn&8]. In the second model
the number density of spheres is held fiXed that the maxi-
pVa(U“) - mum volume fraction achievable is,,) and the internal
1I-— =exp(—pVay’), (3.2  radii is varied to achieve a given volume fraction.
The percolation thresholds of each phase of the IOSA
modelpg (solid) andqgg (void), can be easily derived from a

N

g,= lim

N—oo

whereV, and hencéN, has been taken to be infinitely large.
This argument(for the spherical caseis due to Brown knowledge of the threshold values of the standard 10S

[33,34. By definitionq,, is just then-point void-void corre- Model:pe=~0.3[39] andq;~0.03[40]. For the variable den-
lation function. To distinguish the correlation functions asso-Sity model o f|xed)3 the percolation tharesholds are
ciated with the void and solid we refer to the above model api=1—(1—p§)*~ o/")” andgi=(g3)*~o/")” (so pi—0
the inverse IOSA modelas the correlation function corre- andgi—1 asr,—r,). For the fixed density model the IOSA
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FIG. 6. Interface of the IOSA modelr§=0.8,r,=1.0) at a
volume fraction ofp=0.2.

solid phase is percolative = pg and the void phase is

percolative ifqmin=1—Pmac 0 - (&) Jo=35) T=dn 0 [s=5), T=dr

N=
Bounds have been calculated on the conductiiiiyl (]

and the bul{8] and sheaf9,11] moduli of composite ma- J OC

terials(reviewed in Ref[1]). These can be expressed®] in n q ) A K/‘
terms of the volume fractions and properties of each of the ~Ti(s=2), =8z &) 1I(s=35), T=8x (1) I(s=3), T=8n
phases and two microstructure parameters

IV. MICROSTRUCTURE PARAMETERS

»ds (1 FIG. 7. Variety of microstructure$volume fraction 20% for
J —f duP,(u)f(r,s,t), (4.2 which the third-order statistics are known exactlg)—(c) I0S and
0 SJ-1 IOSA models (;=1); (d)—(f) one-level cut GRF's{g)—(l) two-
level cut GRF’'s. Except where noted, model | h€s=8 and

5 150 (=dr [~ds (1 = =
7]1:ﬂ+ f_J‘ _f dUP,(WF(r.s.0), »=0 and model lllx=1.5.
21 olnJo SJ-1

pq We now report calculations of the microstructure param-
(4.2) eters for a variety of two-level cut GRF and IOSA models.
Our method of calculatin and has been discussed
wheref(r,s,t) =pa(r,s,t) - pz(r)pz(s)/p,tzfr2+ s*-2rsu previously[18]. In additiongﬁlv(e emgllc))y an adaptive integra-
and Py(u) d?”OteS the !_egendre polynomial of oraerAs tion algorithm[41] to compensate for the fact that the sub-
we argu_ed in Ref[18]{ it only appears necessary to knovy integrandfl,an(u)f(r,s,t)du varies rapidly in the region
broad microstructural information ab_out a gengral COMPOSIt¢ _ 5’ and involves a considerable number of function evalu-
to successfully apply the bounds. This conclusion arose fromyjons The error in the resuilts is less than 1%. To model as
the observation that the bounds are relatively insensitive tQije a range of materials as possible three qualitatively dif-
small variations in the microstructure parameters. Furtherfgrent spectra are used in the level cut GRF scheme: models
more, we found that the parametéisand 7, are insensitive | (K =), | (K=8), and Ill (u=1.5). These spectra lead to
to fine microstructural details within a class of compositessyrface fractal, rough, and smooth interfaces, respectively.
(e.g., the overlapping sphere class or the one-level cut GRF As we are primarily interested in low volume fraction
clasg. An example of this insensitivity is also seen when porous or solid media, the microstructure parameters we re-
polydispersity effects of particulate models are consideregbort are in the range 0Op<0.4. The results forZ; and
[38]. In light of these facts the parameters calculated fromy, are given in Tables | and Il and selected results are plot-
models may well have application to physical composites foted in Figs. 8 and 9. The results for the two variants of the
which precise microstructural information is unavailable. I0SA model are given in Table Il and plotted along with the
In Fig. 7 we provide a graphical summary of the wide results for the two-level cut GRF models in Figs. 8 and 9.
range of isotropic composites for whighy (and hence the Due to the simple geometry of the IOSA model it is possible
microstructure parametgrsan been exactly calculated. It is to calculateo, to orderp (see Appendix D This result can
clear that the two-level cut GRF and overlapping hollowthen be used to sho@\ﬁ|p=o=(r0/rl)3 (represented by sym-
sphere model considerably expand the classes of materials bwls in Fig. 8, in agreement with our numerical calculations
which the bounds can be applied. of ¢;.

9 [(«dr

“T2pale T
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TABLE I. Microstructure parametef; for a range of materials generated from the symmetric GRF

model.

Model |, K=oo I, K=8 11

S 0.20 0.35 0.50 0.20 0.35 0.50 0.20 0.35 0.50

p 4

0.050 0.401 0.401 0.402 0.706 0.773 0.786 0.785 0.872 0.892
0.075 0.402 0.408 0.409 0.641 0.719 0.739 0.733 0.845 0.873
0.100 0.405 0.413 0.415 0.597 0.684 0.706 0.691 0.824 0.858
0.125 0.410 0.422 0.425 0.563 0.655 0.677 0.655 0.807 0.845
0.150 0.417 0.428 0.431 0.536 0.633 0.656 0.625 0.791 0.828
0.200 0.425 0.443 0.449 0.500 0.601 0.628 0.574 0.769 0.819
0.250 0.435 0.459 0.464 0.478 0.583 0.611 0.532 0.753 0.811
0.300 0.443 0.475 0.481 0.464 0.575 0.605 0.495 0.741 0.808
0.350 0.451 0.491 0.497 0.455 0.572 0.603 0.456 0.734 0.807
0.400 0.456 0.506 0.515 0.444 0.574 0.607 0.411 0.728 0.810

To compare the properties of different media we gFg. has been observed that the bounds also have reasonable pre-
10) the upper bound on the conductivity for one member ofdictive power[1]. To test the predictive utility of the bounds
each class of composite: two-level cut GRFs, hollowand provide a direct comparison between microstructure and
spheres, 10S voidg34] (or “Swiss cheese), one-level cut  properties we use a finite-difference method to explicitly cal-
GRFs[18], and 10S[34] (or solid spheres culate the conductivity of several two-level cut GRFs.

We have also evaluated bounds on the shear, bulk, and The effective conductivityr, of a composite is defined as
Young’s moduli of the models. In Ref30] we showed that the ratio of the current density to the applied potential. We
the upper bound on Young’s modulus was in good agreetakeT as the scale of the sample aktf as the number of
ment with experimental measurements for foamed solidsnodes(so the spatial resolution scaleAx=T/M). The gen-
Model ll(s=0.5 provides a good model of polystyrene eration of random fields and the method for determining
foam (compare Figs. 2 and)3and the IOSA model accu- were described in Ref.18] for the case of one-level cut
rately mimics the microstructure and properties of sinteredields. A number of additional difficulties are encountered in
hollow glass spheres. In Fig. 11 the upper bound on the shede simulations otr, for the two-level cut GRFs. The major
modulus is shown for each class of composite consideregroblems are(i) discretizationeffects that occur when the
above: the microstructure clearly has a strong influence odiscretization length scalax is insufficient to resolve the
elastic properties. The bulk and Young’s moduli show simi-thin sheetlike structures that ari¢eee, e.qg., Fig.)3and (ii)
lar behavior. finite-scaleeffects that arise il is not large enough to rep-

resent an “infinite” medium. In practicd, should be several
V. SIMULATIONS OF o¢

In addition to bounding the properties of composite media
and providing qualitative information on these properties, it ‘ , . .

-]

TABLE Il. Elasticity microstructure parametey; for a range of E ]

) . . 0.8F e .

materials generated using the symmetric GRF model. o 1

Model I, K=oo I, K=8 I} 0.6 .

& F s

S 0.20 0.50 0.20 0.50 0.20 0.50 o4l o osa ]
R Sl Ii(s=.5)

P 7 i —m I(s=.5) K=8 |
L - - - Ilis=2

0.050 0.355 0.351 0523 0.613 0.609 0.754 02 . =~ _—Toaosy - 1(5(=S.5) 1)<=m
0.075 0.358 0.362 0.463 0.548 0.543 0.705 L — — HI(b=0)

0.100 0.362 0.369 0.430 0.516 0.500 0.672 0.0 ' : : '
0.0 0.2 04 0.6 0.8 1.0

0.125 0.370 0.377 0.416 0.493 0.471 0.648

0.150 0.373 0.388 0.407 0.480 0.449 0.608

0.200 0.394 0.402 0.404 0.473 0.426 0.621

0.250 0.410 0430 0410 0478 0414 0609 FIG. 8. Microstructure parametgy, for selected models. The
0.300 0.426 0.451 0.420 0.492 0.408 0.615 10S model and model I(b=0) are included to show the behavior
0.350 0.438 0.474 0.430 0510 0.406 0.627 of ¢, for different classes of compositg¢see Fig. 7. The solid

0.400 0.442 0495 0431 0533 0.396 0.643 symbols represent analytic calculations of,— for the I0SA
model.
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1.0 ' ' ' ' ] 0.30 [T e e T
A [ —— III(s=.5) (2-cut GRF)
08 PP p— TIOSA (1r,=0.9) .
Lo T 1 [ ---- IOS-voids v p
061\ R X 7 [ —mees ITI(b=0) (1-cut GRF e
Mop Sl ] 0201 _.—.. IOS spheres N
04  TTTmm- —osAa o, | e A
-------- Mi(s=.5) I v e
—eem I(s=5) K=8 ] 0.15F ol
021 - -~ lll(s=2) L e L
’ — — Ti(b=0) i L
i 0.10| o .
0.0 ! L ! L ‘ L .
0.0 02 0.4 0.6 0.8 1.0
P 005 :
FIG. 9. Elasticity microstructure parametey for selected mod- 0.00:. e ;I-'-.:.:."i/,'.' ....... e, Livees
els. The 10S model and model IHEOQ) are included to show the 0.00 0.10 0.20 0.30 0.40
behavior of5, for different classes of compositésee Fig. 7. p
times the correlation length of the microstructyegpproxi- FIG. 10. Three-point upper bourjd] on the effective conduc-

mately unity. Discretization effects can be reduced by in-tivity (contrast 1:0 of five different classes of microstructure. The
creasingM or decreasingl (to increase the width of the data for the 10S and one-level cut GRF models are from Refs.
sheets relative tax). However, our computational require- [34,18.
ments dictateM <128 and decreasing@ leads to noisy re-
sults. ThusT must be chosen to minimize each of thesecomparisons to be made. In each of the cases we report re-
competing errors. By performing several numerical tg41§  sults averaged over five samples for a range of volume frac-
a reasonable value df was determined to ensure that simu- tions 0.05<p=<0.4. In all cases the simulational data lie be-
lations ofo . are accurate. As the sheets become thifiner, tween the bounds.
p decreasesit was found that smaller values af are nec- First we consider the conductivity contrast ,=10,1.
essary to eliminate finite-scale effects. This can be explained@he results are tabulated in Table IV and plotted in Fig. 12
in terms of the faster decay of the correlations between thalong with the bounds for each model. Here and in subse-
components of phase 1. guent calculations the lower bound of Befat and the up-

We choose to study the effective conductivity of modelsper bound of Milton[10] (see Ref[18]) are employed. The
llI( s=0.5), 1(s=0.5 (K=8), and Ili(s=0.2). The former data for model 11I6=0.5) practically lie along the relevant
models provide examples of smooth and rough sheetlikéipper bound. In contrast, the effective conductivity of mod-
pores. The latter mod¢lll( s=0.2)] has a morphology com- els Ill(s=0.2) and I(s=0.5) fall between the bounds; how-
prised of inclusions with both a sheetlike and node-bondlikeever, the upper bound still provides a reasonable estimate of
quality. The conductivity contrasts employed occur in physi-o, in each case. For purposes of comparison the bounds for
cal composites and have been studied previously, allowintghe one-level cut GRF model Il=0) are included in Fig.

TABLE lll. Microstructure parameters for different versions of the IOSA model. For the iGasé the
results are just those of the standard 10S mdsgeé Ref[1]).

Model ro=0.5 ro=0.9 Pmax= 0.9 Pmax=0.7

p 41 Ui 41 7 {1 71 4 7

0.05 0.152 0.119 0.737 0.468 0.974 0.936 0.955 0.888
0.10 0.179 0.153 0.744 0.490 0.948 0.880 0.911 0.788
0.15 0.207 0.187 0.752 0.512 0.924 0.827 0.870 0.707
0.20 0.234 0.221 0.759 0.533 0.900 0.780 0.829 0.640
0.25 0.262 0.254 0.766 0.554 0.877 0.746 0.791 0.590
0.30 0.289 0.288 0.772 0.576 0.856 0.710 0.754 0.551
0.35 0.317 0.322 0.778 0.596 0.835 0.683 0.718 0.524
0.40 0.345 0.356 0.784 0.616 0.815 0.662 0.683 0.508
0.50 0.402 0.424 0.794 0.656 0.776 0.638 0.614 0.502
0.60 0.459 0.492 0.801 0.697 0.741 0.631 0.539 0.520
0.70 0.517 0.560 0.805 0.733 0.706 0.643 0.414 0.511
0.80 0.578 0.630 0.804 0.771 0.666 0.668

0.90 0.643 0.705 0.792 0.804 0.558 0.658
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FIG. 11. Three-point upper bourfd1] on the effective shear FIG. 12. Simulation data and bounds for three different two-
modulus(contrast 1:0 of five different classes of microstructure. |evel cut GRF models at contrast, ,=10,1. The thick solid line
The data for the I0S and one-level cut GRF models are from Refscorresponds to the bounds for the one-level cut modéb=HD).

[34,18. The bounds are clearly seen to differentiate the different classes of
media at lowp.

12. At low p the bounds clearly differentiate between the
different classes of media. It is clear that the model llI
(s=0.5) is a significantly more efficient conductor than mod-
els 1ll(s=0.2) or I(s=0.5 and those defined using a one-

large contrast situation the upper bound for model I
(s=0.5 agrees with the data.

To consider the case of diffusive transport in membranes,
. we assume that the membrane has negligible diffusivity with
level cut GRF in[18]. _ respect to the surrounding fluid. Therefore the contrast
~ The simulation data for the contras{ ,=50,1 is reported ;. .0 1 is employed. For this system large discretization
in Table V and plotted in Fig. 13. Qualitatively the results gffacts prohibit the consideration of modes#0.5) at mem-
are the same as those discussed in relation to the caggine volume fractions of less thar=0.10. The data are
01,=10,1. Note that the upper bound is again a good estip esented in Table VIl and Fig. 15. Note that the presence of
mate for model 1116=0.5 and less so for models Il 5 membrane occupying 10-20% of the total volume reduces
(s=0.2) and I(s=0.9). _ o the diffusivity by a factor of 2. This is due to the tortuous

In porous rocks and solid foams the conductivity of the pathways through which the diffusing species must migrate.
medium surrounding the conducting pathways has negligiblgy contrast to three cases considered above, the upper bound

(or zerg conductivity. To model such systems the contrastjpes not provide a good estimate of, for model IIi
01,=1,0 is used. The data and computational parameter(sszo_5)_

used in the simulations are reported in Table VI. Each ma-

terlall is seen to be co_nductllve.at the lowest vqlgme fraction VI. EFFECT OF MICROSTRUCTURE ON PROPERTIES
consideredp=0.05. Discretization effects prohibit accurate

simulations ofo, at lower volume fractions. The simulation ~ The precise role of microstructure in determining the
data and the upper bounds are plotted in Fig. 14. Even in thimacroscopic properties of composite media has been the

TABLE V. Effective conductivity of several two-level cut GRF's for the casg,=10,1.

l(s=0.2) ll( s=0.5) I(s=0.5)

p T/ Oe Error Tlw Oe Error Tl Oe Error

0.05 4 1.28 0.01 2 1.32 0.02 2 1.27 0.00
0.10 4 1.51 0.02 2 1.64 0.03 2 1.53 0.02
0.15 4 1.76 0.04 2 1.96 0.05 2 1.77 0.02
0.20 4 2.02 0.06 4 2.30 0.07 2 2.05 0.01
0.25 8 2.32 0.03 4 2.58 0.10 4 2.35 0.01
0.30 8 2.61 0.04 4 2.94 0.12 4 2.67 0.01
0.35 8 2.93 0.03 4 3.30 0.13 4 3.02 0.01
0.40 8 3.25 0.05 4 3.70 0.13 4 3.40 0.02
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TABLE V. Effective conductivity of several two-level cut GRF's for the casg,=50,1.

N(s=0.2 I(s=0.5 I(s=0.5

p Tl O, Error Tl e Error T/ [ Error

0.05 4 2.3 0.2 2 2.6 0.2 1 21 0.1
0.10 4 34 0.4 2 4.1 0.4 1 3.3 0.1
0.15 8 4.1 0.1 2 5.7 0.5 1 4.2 0.1
0.20 8 5.1 0.2 2 7.4 0.7 1 5.4 0.1
0.25 8 6.4 0.2 4 9.3 0.2 2 7.0 0.1
0.30 8 7.8 0.2 4 11.2 0.3 2 8.6 0.1
0.35 8 9.3 0.3 4 13.2 0.3 2 10.4 0.2
0.40 8 10.9 0.4 4 15.3 0.3 2 12.3 0.2

subject of many studies. A number of simple models of poreThis is confirmed by comparing the relative valuessgffor
shape have proposed to determine, for example, the effect ofiodel | in the casesK=8 (smooth on scales below
pore-size distributior{20], pore roughnes$42], and pore \.;,=2#/8) andK=c (rough on all scalgssee Appendix
geometry[21] on transport in porous rocks. Simple micro- B. The effect of increasiné from 8 to 32 on the morphol-
mechanical modelp43] have also been studied to ascertain,ogy of model I16=0.5) can be seen by comparing Figsi)7
for example, the effect of inclusion shap®t] and cell struc-  and 16a). In the rough model the sheetlike pores are thinner
ture [4,45] on the mechanical properties of composites. Inand a large proportion of pore space is distributed in protru-
this section we investigate how morphology influences theions. As these protrusions contribute little to the overall
properties of realistic model composites. conductance(or strength, this significantly reduces both
To simplify the discussion we summarize relevant dataconductivity and strength. This also explains why model IlI
for a variety of GRF’s and particulate microstructure modelsis more conductive(strongey than model I. The much
in Table VIIl. We consider systems of 1:0 contrast atsmaller effect of roughness on morphology of one-level cut
p=0.2. This case corresponds to a conductimgchanically  fields can be seen by comparing Figdj7and Fig. 16b): the
strong matrix in an insulatingweak medium(e.g., foamed basic inclusion shape is less affected than in the two-level cut
solids[30]). This contrast also corresponds to low porositycase.
conducting pores in an insulating mediufe.g., porous Now consider the data for the spherical particulate media
rocks. To gauge the effect of microstructure on materialin Table VIII. The hollow sphere model appears to be more
properties we assume that the upper bound on each propergnductive, or stronger, than the 10S voi@wiss cheege
provides an estimate of its actual value. A comparison ofmodel. This is due to the fact that the former model has an
o, ando, (where availableshows that this is generally true approximately sheetlike characté¥ig. 6) in contrast to the
[46]. Note, however, that if the difference betwee for  node-bondlike structuref2] apparent in the inverse 10S
each of the models is smdk.g., I0S voids and model Il model. The I0S model go=0.2 does not have a sufficient
(s=0.2) and examples in Ref18]] such an assumption can- density of spheres to provide a percolative pathway.
not be made ¢2> o®, but 03< oD).
At a 1:0 contrast the effective properties only differ from
zero if the composite is macroscopically connedfesl, per- e AR N RRRRRRARA T
colative. At p=0.2 this condition is satisfied for all but one T

of the media(conducting spheres in an insulating medjum 151 ;ﬁ(si'z) 7
Above this threshold the magnitude of the macroscopic prop- o (s=2) ]
erties is then governed by the shape of the inclusions. It is el ‘

clear from Table VIII that sheetlike structures provide higher
conductivity and mechanical strength than those with a node-
bondlike character. To elucidate the role of inclusion shape 10
we derive approximate expressions for the effective conduc- o, |
tivity of periodic media with unit cells of each type in Ap-
pendix E. For small volume fractiong1) the node-bond
model has o.=p?c; and the sheetlike model has,
=2po, in qualitative agreement with the data. Interestingly
the periodic sheet model provides a surprisingly good esti-
mate of 0,=30.2=0.133 for model 1lI6=0.5
(0¢=0.130).

From Table VIl it also evident that interfacial roughness
plays an important role in determining properties. Consider
the two-level cut fields §=0.5) and lli(s=0.5). In Figs. 7i)
and ) it is clear that both models contain sheetlike pores. FIG. 13. Simulation data and bounds for three different two-
The differences are then due to the interfacial roughnessevel cut GRF models with conductivity, ,=50,1.
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TABLE VI. Effective conductivity of several two-level cut GRF's for the casg,=1,0.

lI(s=0.2) li(s=0.5 I(s=0.5

p Tl Oe Error T/ Oe Error T/ Te Error

0.05 4 0.018 0.002 2 0.034 .003 2 0.011 0.003
0.10 4 0.030 0.004 2 0.061 .003 2 0.044 0.005
0.15 4 0.050 0.005 2 0.095 .003 2 0.058 0.007
0.20 4 0.073 0.007 4 0.130 .004 2 0.078 0.009
0.25 8 0.094 0.004 4 0.165 .005 4 0.111 0.004
0.30 8 0.121 0.003 4 0.204 .005 4 0.141 0.004
0.35 8 0.154 0.003 4 0.245 .006 4 0.177 0.007
0.40 8 0.190 0.002 4 0.287 .007 4 0.219 0.006

VIl. CONCLUSION tally rough and relatively smooth inclusions we found that

In this paper we have derived the three-point statisticaimerfadal roughness decreased composite conductivity and
bap P strength. The observation was confirmed by directly compar-

correlation functions for two models of random composite. ; h .
media. The results were applied in the evaluation of boundy'J simulated values af for model I(s=0.5) (sheetlike and

on the effective conductivity and elastic moduli of eachrough)_and model .“IS:O'S). (sheetlike and smooth The
I » Y ; - behavior was physically attributed to the fact that the protru-
model. In addition the “exact” effective conductivity was

estimated for the two-level cut GRF model by direct simula-s'ons of rough interfaces contribute little to effective proper-

. ) : ) ies.
tion. The model_s are applicable to physical c_omposnes thatf The models discussed here considerably expand the range
remain percolative at very low volume fractiops<1%.

. . of systems to which bounds can be applied. To facilitate use
These include solid foams, porous rocks, membranes, an . ;

. . of these bounds we have tabulated cross sections and micro-
sintered hollow glass spheres. In contrast, previously em:

loyed models of microstructure have percolation thresholdStrUCture parameters for a number of different variants of
gf grder 10% P Bach model. Such bounds have two clear applications. First,

; .. they can be used to narrow the possible microstructures of a
Microstructure was demonstrated to have a strong influ- . . . ) .
) . . .~ composite for which properties are known; composite mate-

ence on the effective properties of composites. The relative . .
o rfials may violate the bounds for a particular model system.
variations among the two-level cut, IOSA, and one-level cutI

models were attributed to three morpholodical factors: Orendeed for certain cases of realistic media the bounds are
. : P 9 P mutually exclusivesee Fig. 12 Second, the upper bound is
shape, interfacial roughness, and percolation threshold of thef .
i . ; oot . often a very useful estimate of the actual property. Indeed,
material. Materials with sheetlike inclusions were shown to,

have a significantly greater conductivitstrength than ma- for model Ill(s=0.5 the upper bound provides an excellent
terials with node-bondlike inclusions. By comparing the mi- estimate of the effective conductivity over the full range of

. ! . volume fraction measured.
crostructure parameters of similar composites with frac- . : .
The simulational data presented here allows a comparison
of model properties with those of physical composites
030 [T e ERERERES RaaaanEss ARany [30,41,47. Furthermore, the data can be used to assess both

predictive theories fotr, and higher-order bounds. We note
b e MM(s=.5) 1 that the four-point correlation functions of the two models
025} o Ii(s=2) considered here can be calculated and hence used to evaluate
I o I(s=_5.) 0 o ] known four-point bound$11,48. Finally, we remark that
020k ) ] the generalization of the I0S model to include the case of
G e 8] hollow spheres broadens the utility of the model as a bench-
e ] mark theoretical tool, as well as providing a realistic model
015 “ 1 of certain composites.
o101 ] APPENDIX A:
THE LEVEL CUT GAUSSIAN RANDOM FIELD
0.05:— . ﬂ In this appendix several results are derived that are useful
A 1 for calculating then-point correlation function of a material
o.oo:. e L R defined by level cuys) of a Gaussian random field
0.00 0.10 0.20 0.30 0.40 [19,25,28. The joint probability densityJPD of a Gaussian
p random field isP,(y1.Yz - ..Yn) =[(27)"|G|] %exp(-

iy'Gly), where the elements of G are

FIG. 14. Simulation data and bounds for conductivity contrastdij .:g(rij) :<y(ri)y(_rj)> [49]. The functiong .h.as the prop-
o1,=1,0. The models and contrast are relevant to solid fog@és ~ ertiesg(0)=1 and lim_..g(r)—0. By definition we have
and porous rockf47]. pn=/ldy;- - [Pdy,Pn(Y1.Y2, ... .yn). Note that, in this
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TABLE VII. Effective conductivity of several two-level cut GRF'’s for the casg,=0,1.

NI(s=0.2) ll( s=0.5)

p T/ e Error T/ e Error

0.10 4 0.66 0.02 2 0.55 0.05
0.15 4 0.62 0.02 2 0.49 0.06
0.20 4 0.58 0.02 2 0.43 0.07
0.25 8 0.53 0.01 4 0.34 0.05
0.30 8 0.50 0.01 4 0.29 0.05
0.35 8 0.47 0.01 4 0.24 0.04
0.40 8 0.44 0.01 4 0.20 0.03

form, p, is difficult to evaluate. For example,df;=1 for all ~ and perform the integrals with respectwg. The result is
i,j then|G|=0 (n>1). Itis possible to avoid such problems simply integrated to give\, (up to a constant

and reduce the number of integrations required by taking the
following approach.

, . —2aja5t+ak
Expanding Eq(2.1) gives terms of the form Ay= f — Lazzaz ]
2mJo 1-12 t2 2(1-t°%)
(A6)
An(g,8)= H H(yi— ) (A1)
The derivation ofA 5 follows similar lines: The initial inte-
where g= (912, - - - Gn-1)n)» @=(@1, ... @), and theq; ~ gration over they; gives
are equal toa or B. The analysis that follows relies on an
integral representation of the Heaviside function f dWlf dwzf dw3 (12w Gw+iwTa
3 .
2
H(y—a)— —_1f oy W (A2) (e Jeve Je (A7)
2i C w’

For this case |G|=1—g%,— 33— 953+ 2012914023 and
where the contou€ lies along the real axis, except near the TGW=W§+W§+W§+2w1w2g12+ DWW 15t 2WoWals.

origin, where it crosses the imaginary axis in the upper hal aking the derivative of EqAT) with respect tag,, gives

plane.
Now we turn to the evaluation of the terri&1). For the
casen=1 we haveG=g;;=1 so dA5 _ 1 dws (12w —iagw, * ”
——=—7—3| —e€ dw, dw;,
d912  (2mi)°)c ws - -
1 *® 22 -
A1:<H(Y1_a1)>27j e (U2t°y¢. (A3) Xe—(l/z)\ivTGv”vﬂv?/Tu, (A8)
\VETTJ ag
Now considerA,. In this case the matri& in the JPD is N SN SN NN —
080F ™. 3
J11 912 19 : E
021 O22) [0 1 070 3
with g=g1,=0,; and |G|=1—g? Using the Heaviside 060k ]
function and interchanging the order of integration gives TUE E
G, ¢ E
Am delfdwz |waf q f q 050 3
2= |G|(1’2(27r|)2 cw; Jew Y1 Y2 “a ]
0.40F =
% ef(1/2)yTG’ly7iny :
0.305_ —&— IlI(s=.5) E
1 dwlf dW2 |aTW (1/2)W1 W1Wog— (1/2)W2 Pl II(s=.2) a
~(@mi)?)owy Jow 0.20F o ]
E ..... Lav v | IR AT Lo e ooy 1oy ‘:
In this case we differentiate with respectdo 0.00 0.10 0.20 0.30 0.40
p
dA, __ - 2[ dWlf dw.e 1/2)a'Ga+ialw
a9 (2mi)°) = - FIG. 15. Simulations ofr, and the bounds foo; ,=0,1. This

(A5) contrast is relevant to modeling transport in membranes.
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TABLE VIII. Qualitative comparison of microstructure and macroscopic properties. We consider the contrast 1:0 at a representative
volume fractionp=0.2. 0, k,, andu, are upper bounds on the effective conductiyity, bulk [8] and shear moduluyd 1], respectively.

Model Microstructure Pc Oe { m oy Ky My
ll(s=0.5 smooth, sheetlike 0 0.130 0.819 0.621 0.134 0.115 0.094
I(s=0.5 K=8 rough, sheetlike 0 0.078 0.628 0.473 0.122 0.102 0.081
lI(s=0.2 smooth, node-bond-sheetlike 0 0.073 0.574 0.426 0.118 0.098 0.077
1(s=0.5 K= very rough, sheetlike 0 0.449 0.402 0.106 0.086 0.068
I(b=02K=0 very rough, node-bondlike 0.366 0.333 0.096 0.076 0.060
I(b=02K=8 rough, node-bondlike 0.07 0.027 0.326 0.291 0.090 0.071 0.054
I b=0)2 smooth, node-bondlike 0.13 0.026 0.237 0.197 0.074 0.057 0.042
I0SA (r,=0.9) hollow spheres 0.09 0.759 0.533 0.131 0.117 0.090
I0S voids Swiss cheese o3  0.076 0.518' 0.416' 0.113 0.093 0.073
10S spheres 0.30 0 0.118 0.14¢' 0.044 0.032 0.026
3Referencd 18].

bReferencd 40].

‘Referencd57).

dReferencesl,34).
®Reference$2,39|

where W= (Wq,Wp), U=(Ug,Up)=(ay+igiWz,a, 1
+ig,aws), and As(g.8)= fo dt[912A12(19,8) +919A15(19,8)
é:[l Oiz| (A9) FaaAoltgal. (A1)
g 1

Performing the standard integrals with respectwtp and  The results forA; are employed in the text to derive the
Wy gives statistical correlation functions.

&A3 1 1 F{ ai—Zalazglz—i— ag
912 27 \[1-g?, 2(1-97)

APPENDIX B: FRACTAL SURFACE DIMENSION

-1 dw, , Berk[25] has shown that the class of level cut GRF mod-
x(—) f —— e~ (W2wwiikw (A10) els with spectrap(k)=(a/d4m)k 2¢"3 as k—ox (0<e<l)

2 | Jc Ws have field-field correlation functiorg(r)=1—br?¢ and sur-
face fractal dimensio®;=3— €. Herea andb are related
constants. In this appendix we show how the finite cutoff
wave numbeK effects the roughnegfractal) properties of a

. (A11) GRF interface. Through a very elegant argument Debye

wherev=|G|/(1-g3,) and

a1(913~ 912923 — @2(923— 912913

K=a3— Vi
1-91 et al. [50] showed that the surface to volume rat®V) of
L . a porous solid was related to the two point correlation func-
Now the remaining integral can be reexpressed to give tion by
&AS 1 1 % ai_zalazglz“l‘ ag
= exp —
g1 (2m) \1-g2, 2(1-97,)
1 ©
X ——| e-(2tq, (A12)
V2R,

where F1,= «/\/v. Similar expressions can be derived for
dA31dg15, and JAz/dg,;. These are denoted by
Aij(9,@=0dA3/dg;; . With k#i or j we can also write a
general expression fd¥;;

2
F.= ll_gij/a  @i(Qik— 9jkTij) + (9 — 9ikTij)
1] |G| \ k 1_gﬁ .
FIG. 16. Cross sections of two models based on spectrum I. This

The results can be formally integrated to give, up to a configure shows the roughness of the interface for lakgécompare
stant, Figs. i) and 7d)].
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S To examine the behavior for>\ ,;, we can successively
—4p,(0)= v (B1) integrate(2.2) by parts[18] to obtain
Now cc_)nsiderpz for the g_eneral Fwo-level cut Gaussian_rz_;m- g(r)= g%:)_ % (B6)
dom field. The most instructive method of examining
\F/)vzri(t(()a) is by generating an expansion for smallThus we coKr  3sirKr e
X KEZ + LR +O(K™r %) .
1 (1 dt . _ . .
po(r)=p— _J' f(t), (B2)  If Kr>1 this expansion is asymptotic ¢ [52]. Now in the
2m)1-5\1-12 region A\ ,in<<r <1 the algebraic terms in the expansion are
negligible andg «=g=(1—br?€)/P (with P=1).
whered(r)=1—g(r) andf(t) is a suitably defined function. In summary we have
Integrating by parts and retaining leading-order terms gives
e f(1) 0<
pa(r)=p—25(r)f(1)/2m, (83) P=| Va5 |1 O=r<Amin
Pa(r)~ (B7)
with  f(1)=exp(—a?2)+exp(-p%42). Now if &(r) _( be(—l))r‘ N <r<l
=0(r?), then the specific surface is well defined and P 27 | min ’
p,(0) can be evaluated. However, for the class of spectra_
considered by Berk25] 5(r)=br2¢ so Th|s demonstrate; the reguldd {=2) nature c_:f the surface
in the former region and the fractal behavidd &3 —¢)
py=p— J2bf(1)rei2m. (B4) over the spatial scales in the latter region.
Thereforep5(0) and the specific surfaces(V) are infinite. APPENDIX C: INTERSECTION VOLUME OF TWO
Bale and Schmidi51] have shown that this type of singular AND THREE SPHERES

behavior implies a fractal surface. The fractal dimension
Dy is given in terms of the correlation function through the
relation p,(r)=p—cr3~Ps with ¢ some constant. We infer
from Eq.(B4) that our model | €&=1/2) has a fractal surface

The intersection volum¥(?),(d) of two spheres of radii

p and v separated by a distanakis simple to calculate.
With ry=min(u,v) and r,=max(u,r) V?=4xr33 if

with D=2.5. 0=d<r,—ry, VP=0if r,+r;<d< and

As discussed 18], it is necessary to introduce a finite- @ 3 3 ) ) L3 13
cutoff wave numbeK for computational and physical rea- ViZ=2m(ri+r)B—m(rix  + 1% — 3 X3— 3%3)
sons. We now show how this parameter changes the micro- (CY

structure. The wave numbeK corresponds to a cutoff
wavelength\ ,,=2m/K, which specifies the scale of the -
smallest “ripples” on the surface. Thus we expect the sur-<2~ 9 X1:

face area to scale as a fractal down to some length scaler'?‘ com]E)act f?rmdnof iheh mttta)rsectcljon. vc&lume.of Ithrbe €
related to\,,. This can be confirmed mathematically by |pr erﬁfsg] egua ral Irf?h )k as _eer|1_f_ ertl_ve Pri‘é'O‘(JjSY y
considering the small behavior ofp,[g «(1)]. owe . Several of the key simplifications in the deriva-

For arbitraryr, g «(r) can be expressed in terms of the t|on“f0rmula are not possible when the _spheres have different
. . . iy radii. However, a less elegant but straightforward result can
moments ofk. Using a Taylor series expansion for lgirin ; .
the definition ofg « (2.2) we have be determln_ed. Suppose the spheres have radirg, -and
KA rc and are distances b, andc apart and that there exist two

if r,—r;=<d<r,+r;. Here x,=(d?>+rf-r3)/2d and

1/ (K unique pointsP and Q where the surface of the spheres
gk(r)=1- 6( f Amp (K)k*dk|r?+0(K3?) meet. From Powel53] the intersection volume of the three
0 spheres is equal to twice the following expressiBowell’s
theorem):
~1- E<k2)r2
6 ' —(the volume of the tetrahedrdPABC)
—(the volume of the sphere cent&renclosed by the faces of
where the latter approximation is validrif\ ,,;,. Substitut- the tetrahedro® AB C that meet atd)
ing this result into the expansion fp,, (B3) and using rela-  —(the volume of the sphere cen®@renclosed by the faces of
tion (B1) gives[19,2§ the tetrahedrof ABC that meet aB)
, —(the volume of the sphere centérenclosed by the faces of
S_2 @(e‘<1’2)“2+e‘<1’2)ﬁ2). (85) the tetrahedro® ABC that meet aC)
vV 7 3 +(the intersection volume of the spheres centereB and

C enclosed by the two faces of the tetrahedPohB C that
Thus, forr <\, the surface is behaving in a regular manner meet inBC)
(D¢=2), as anticipated. Note that for the case-~ and +(the intersection volume of the spheres centere@ and
e<1 the momentk?) diverges and this approximation does A enclosed by the two faces of the tetrahedPohB C that
not apply. meet inCA)
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00 ap @0

A (b cos C,-b sin C)

(b)

FIG. 17. Geometrical elements used in the calculation of the ,=ry=r-=1 [53] we
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cogl— cosecod

codD= —
sinesinf

(CH

(similarly for co€ and co§&). This gives

racosA—bacp

+cosl(
NeeAGe
(Co)

Ca— COAb,
sinA\rs—bz

qSA:cosl(

b,y—cosAc, ) cn

sinA\ra—ca

Similar results are obtained for the solid angleég and
dc.
It is critical to know whether the poinixg,yp) lies inside
or outside each of the faces of the triangle. This can be done
by defining the variables

+cos 1(

Sa=Ssgr(—Yp), (C8)
Sg=sgn coLyp+SiNCXp), (C9
Sc=sgn coByp—sinBxp+ asinB). (C10

Then, for examples,= *+1 as the pointXp,yp) is inside or
outside face a of the triangle ABC. In the case
have xp=a/2 and

intersection volume of three spheres of different radii. The axis and,,= — ccog\/2sinC, so thats,=sgn(cog), sg=sgn(cos),

nomenclature are those employed in the téat. The tetrahedron
base andb) the sphere centered Atenclosed by three faces of the

tetrahedron.

+(the intersection volume of the spheres centered and
B enclosed by the two faces of the tetrahedRohB C that

meet inAB).

and sc=sgn(co€), as they should. The wedge angle asso-
ciated with the intersection volume of sphei#&andC is

Jra—ag—z5
Vre—ag

(similarly for the angle®z and 6.).

Op= cos‘l( Sa (C1)

The cases where there is no unique point of mtersectlon3 Now the VO“_Jme of a_tetragonal wedge of solid anglés .
between the spheres is discussed below. We first define a‘b/3 and the intersection volume of spheres enclosed in a

coordinate system with origin at the center of sph€ras

wedge of angled is 6V(?/27. Therefore, by Powell’'s theo-

drawn in Fig. 17a). By solving the equations of the three €M

spheres simultaneously it is simple to show that

2_,2,, 2
—rg?+
a‘—rg*+r,

Xp= > a , (C2
—b?+r3—r2+2bcoxp

yP: 2bS|nC ’ (CS)

Zp= \/rcz —xzp—yip. (C9

It is also necessary to know the distanegsac, . . ., given

in Fig. 17a. We have ac=(a’+ra—r3)/(2a),
ba=(b?+ri—r2)/(2b), cg=(c®+r3—r2)/(2c), ag=a
—ac, bao=b—bg, andcy=c—cg.

The volume of the tetrahedron M= tabsinCz. The
solid angleg, of the tetragonal wedge &t [see Fig. 1{)]
can be calculated by using the fact that,=(E+F
+D—1r) and

@) 2 2 2, Oa. (2)
VigyAa,b,c)=Vi— X Spa— 3y ¢B__Z et _Vlyz(a)

+@v< (b)+ V{2 (c). (C12
o I Ixy

Herex=r,, y=rg, andz=r. This formula is equivalent to
Powell's resulf53] in the casex=y=z=1.

Several other cases arise if the politdoes not exist.
Some of these are illustrated in Fig. 18. Either tt@o more
of the spheres are disconnectéubt illustrated, they are
connected buva{®=0 [Fig. 18b)] or the intersection vol-

ume is given by that of two of the spherfSig. 18c)] or
some other formul@Fig. 18d)].

APPENDIX D: DERIVATION OF §1|p=0 (I0SA)

It is possible to develop an independent check on the cal-
culation of {; for the IOSA model by direct calculation of
0. Using the framework of Reynolds and Houdi#] gives



(a) (b)

(© (d)

FIG. 18. Several of the topologically distinct cases that arise in
the calculation of the intersection volume of three spheres of differ-

ent radii.

ge=0,t+ (01— 0,)pfy, (DY)

wheref,=E, /E. HereE, is the average of the field through-
out phase 1 ané is the applied field. While the above for-
mula is exact, it is only possible to evaludig approxi-
mately. In the low concentration regim@<€1) E; is the
field within a hollow spherdconductivity ;) embedded in
an infinite medium(conductivity ;) subject to an applied

field E. To determine this field we consider a more genera
problem where the conductivities of the innermost spheric

region (0<r<r,), the annulus,<r<r,), and the enclos-
ing medium ¢;<r<=) areo,, o,, ando., respectively.

STRUCTURE-PROPERTY CORRELATIONS IN MODE . .

al
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O,

@)

(b)

FIG. 19. Periodic cellular modelga) Sheetlike cell andb)
bond-nodelike cell.

Ab 3330'2(20'1+ 0'2)

T SN20,+0,)(20,+01)—2(50)2°

(f),=—
(D2)

where so=0,—0, and (f;),=(f1)y=0. Now expanding
Eq. (D1) in powers ofdo gives

1 ,  2+s®
09202+(50)p—a(50) p+ (80)°p. (D3)

9530'5
Similarly, Brown’s formula[55] to the same order gives

1 ,  1+27
Ue202+(50)p—37‘2(50) p+ 952

(60)°p.  (D4)

Equating similar terms leads ©)|,-o=s 3=r/r}. Points
representing this result are plotted in Fig. 8 and confirm prior
calculations ofZ,. It should also be possible to calculate the
first-order correctiond¢,/dp|,-o by calculating o to
p(pz) [38,56. Since(; is observed to have a linear behav-
or over a wide range op [38] (see Fig. 8 this would pro-
vide a good estimate of,. Also note that771|p:0 can be
derived using similar methods.

The potential of the field satisfies Laplace’s equation and

charge conservation boundary conditions at phase bound-

APPENDIX E: PERIODIC CELL MODELS

aries. Using standard techniques it is possible to show that,

in each region, the potential has the
da=(Agr +Bgr ~?)cosd with d=a, b, or c. Applying the

appropriate boundary conditions on each of the faces of th

hollow sphere gives

A,=—-95°E/H, B,=0, A,=—3sE(2+Xx)/H,

By=—3rE(1-x)/H, A,=-E,

Be=—r3E[(1-X)(1+2y)+s%(2+X)(1-y)}/H,

where H=2(1-x)(1-y)+s3(2+x)(2+Y), x=0,/0y,
y=oploe, and s=rq/ry. For the desired value of,,
o,=0.=0, and o,= o,. Considering volume averages of
the field leads to

form

To explicitly demonstrate the effect of pore shape on ef-

fective conductivity we estimate, for several periodic net-

orks exhibiting sheetlike, gridlike, and node-bondlike cells.

onsider a structure comprised of periodic repetitions of the
unit cell shown in Fig. 1@). Definingx=h/H, the volume
fractions of each phase are givenyy 1— (1—x)3=3x and
q=(1—x)3=1-3x. Consider the behavior of the model if
013> 05,. In this case most of the current would flow through
the solid faces of the cell that are aligned in the direction of
current flow. The volume fraction of these elements of the
cell is p;=2x—x2. The remaining current would pass
through a layer of phase [Volume fractionp,=x(1—x)?]
and the cell core of phase ®olume fractionq). Treating
each of these mechanisms as conductors in parallel we have
oe=p101+(pP2t+q)o*, where ¢* is conductivity of the
central leakage pathways. Assuming each of the elements of
these pathways act as conductors in series gives
o* =(po+q)(poo; 1+ qo, 1) 7L This leads to
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(1-x)%0,
X(op/oy)+(1—X)

o= (2Xx—X?) o +

2

1 (o)
=02t 3P0~ 3P0

1+ —
01

where the approximation holds fop<1. Finally, o,
=2g,p in the caser,=0.
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the effective conductivity. A cross section of the unit cell of
a nodebondmodel is shown in Fig. 1®). The central cube
has side lengthx™ and the six arms have a square cross
section of side lengtlx. Taking the cell to have unit width
we have p=x3"+3(1-xMx?> (m=<1) and q=1-p. If
o,=0 then most of the current will flow through the bonds
parallel to the direction of the applied field. Therefore,
ge=01X%. In the casem=1 a uniform grid results and

In a similar way a “toy” model can be defined to quali- g.=3po; to leading order inp. For m=1/3 a node-bond
tatively demonstrate the effect that necks or throats have ogeometry results and.=p?o;.
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